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In this paper we generalize the well known Riesz's
representation theorems for additive and <7-additive scalar
measures to the case of additive and <τ-additive set-valued
measures.

1* Introduction* Consider a nonvoid set Ω and an algebra jzf
over Ω. An additive set-valued measure Φ on the field (42, Ssf) is a
function Φ: J ^ -> {Γciί m : T Φ 0} from jzf into the class of all non-
empty subsets of Rm, which is additive, i.e.,

0 Φ Φ(A) c Rm for all A e ,s*f

and

Φ(Λ u Λ) - Φ(Λ) + Φ(A)

for every pair of disjoint sets A19 A2 e jzf. If Jzf is a σ-algebra then
Φ is called a σ-additive set-valued measure, iff

for every sequence A19 A2, of mutually disjoint elements of
Here the sum ΣϊU Γ» of the subsets TΊ, Γ2, of Rm consists of all
thevectors: "x — Σ?=i ^ with xn e ΓΛ for neN. In the sequel, "Φ | j^f
is an additive [resp. cr-additive] set-valued measure" is an abbreviation
for an algebra [resp. a σ-algebra] over Ω and a function Φ: s*f ->
{TdRm:TΦ 0} which is additive [resp. <r-additive]. The calculus
of additive and σ-additive set-valued measures has recently been
developed by several authors (see [2], [4], [5], [1] and [6]) and the
ideas and techniques have many interesting applications in mathe-
matical economics (see [3], [4] and [10]), in control theory (see [8]
and [9]), and other mathematical fields. Additive and σ-additive
set-valued measures have also been discussed for their own mathe-
matical interest, because they extend the theory of scalar additive
and σ-additive measures in a natural way. This is the background
of the present paper. Theorems 1 and 2 extend the known represen-
tation theorems of Riesz for bounded, additive [resp. regular, σ-
additive] scalar measures to the case of bounded, additive [resp.
regular, σ-additive] set-valued measures.
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2* Some properties of additive set-valued measures* The
following Lemma 1 is well known and has appeared in the literature
in several forms (see [1], Proposition 3.1, p. 105). We state it here
in a form suitable for the sequel, and for completeness we also give
the proof.

LEMMA 1. // Φ\ j y is an additive [resp. σ-additive] set-valued
measure, then the function μXiΦ\^S^f with

μx,Φ(A): = sup {(x, y): y e Φ(A)}

is an additive [resp. σ-additive] scalar measure for all x e Rm.

Proof. The set function μXtΦ\J^ is well defined and with values
in (-oo, +oo]. The additivity of μx^ is trivial. Let A19 A2, be
a sequence of mutually disjoint sets An e ,jy and A — U?=i An. If
z e Φ(A) then z = Σϊ=i %*, where zn e Φ(An) for n e N. Then

= Σ ^ lim inf Σ /£„ (AJ

and therefore μx,Φ(A) ^ lim inf̂  Σί=i μXtφ(An). If μΛtΦ(A) = oo there
is nothing else to show. If μ9tΦ(A) < oo, the additivity implies
μx/ι{An) < co for every w. Given ε > 0, choose for each w an ele-
ment yneΦ(An) such that μXtΦ{A^) ^ <a;, #Λ> + ε 2"w. Denote ^ =
Σί=i 2/« + Σ^>/c zn. Then gfc e Φ(A) and

K

( 2 ) lim sup Σ μxΛAn) — s ^ lim sup (x, yk} ^ μXtΦ(A) .

Since ε is arbitrarily small, (1) and (2) imply μx,Φ(A) = Σ?=i μx,φ(An).

We call an additive set-valued measure Φ | J ^ bounded, iff
LLe^ Φ(-A) is a bounded subset of Rm. In the case that Φ is tf-addi-
tive the following Lemma 2 is a result of Z. Artstein (see [1], p.
105). If Φ is only additive, the proof is given in [12], Korollar 2a.
v\ denotes the total variation of an additive scalar measure v\.$xf

and elf , e2m the 2m vectors of the form (0, , ±1, , 0).

LEMMA 2. Let Φ \ ,S^ be a bounded, additive set-valued measure
[resp. a o-additive set-valued measure with bounded Φ(Ω)] and μ: —
ΣtΞi \μβi,φ\ Then μ\*S>/ is a nonnegative, finite additive [resp.
σ-additive] scalar measure with

for all
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Let B(Ω, Jϊf) denote the set of all uniform limits of finite linear
combinations characteristic functions of sets in Jϊf and B+(Ωf j&)
the subset of all nonnegative functions of B(Ω, Jzf). B(Ω, Jzf) is
a Banach space. The norm on B(Ω, j&) is denoted by || | |.

LEMMA 3. If Φ\ J ^ is a bounded, additive set-valued measure,
then:

( a ) Every feB(Ω, s*f) is μXtΦ-integrable for all xeRm.

(b) If feB+(Ω, Λ/) then \fdΦ with (\fdφ\x): = \fdμβ9* is a

sublinear functional on Rm.

Proof, (a) Choose xeRm and Aejzf. By Lemma 1 μΛ,φ is an
additive scalar measure and by Lemma 2

\x\β(A) .

Therefore

\μ.tφ\(A)£\x\μ(A)

and hence

I j fdμmtΦ\ ^ j \f\d\μ..φ\ ̂  \\f\\\μx,φ\(Ω) < oo for all feB(Ωf

(b) The function μ.>Φ(A)\Rm with (μ.tΦ(A))(x): = μx>Φ(A) is sub-

linear for every A e *$>/. Therefore \ tdΦ is sublinear for every simple

function teB+(Ω, *Ssf) and hence \fdΦ for every feB+(Ω,

Consider the system (j^7 3) of all nonvoid, compact subsets of
Rm with the Hausdorff distance δ and Sfm\ ^{KeJT: K convex}.
(J^7 δ) is a metric space and

(1.1) (£fm9 8) is complete

(see [4], (5.6), p. 362). Let Λm be the closed unit ball in Rm and
β:j2^-»<i?U.) with 8(Γ): = β( , T) and s(xf T): = sup{<α;, y>: ye Γ}
for α;€^m, Γ e ^ m . By [11]

(1.2) s is an isometric function .

LEMMA 4. // Φ \ jzf is an additive set-valued measure such that
Φ(A) is compact for all A e Jzf, then Φ is σ-additive iff δ(Φ(An)f {0}) -* 0
for every sequence Aίf A2, , in J^ with An | 0 .

Proof. See [12], Satz 1 or [6], Prop. 3.4.
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3* Representation theorems* Our aim is to identify certain
additive [resp. σ-additive] set-valued measures as linear mappings
between suitable linear topological spaces. Let BA(Ω, Jzf, m) be the
set of all bounded, additive set-valued measures Φ \ Jzf with Φ(A) e J2^
for all AeSsf and Em the set of all functions s( , T):Λm->R with
Te^fmΈm is a convex cone in the Banach space ^{Λm) of all real-
valued continuous functions on Λm. Therefore Vm: — Em — Em is a
linear subspace of c^(Am). The norm on ^(Λm) is denoted by || | | t.
Finally ^f+{B{Ωy £>/)\ Vm) denotes the set of all continuous, linear
mappings φ\ B(Ω, Jϊf) —• Vm, where φ(f) eEm for all feB+(Ω,

THEOREM 1. The mapping π: BA(Ω, jxζ m) -> ̂ f+(B(Ω, j y ) ; Vm)

defined by (π(Φ))(f): — \fdΦ is one-to-one and onto for all meN.

Proof. (1) First we show that π is well defined. Choose Φ e

BA{Ω, <s*f,m) and feB(Ω, *s*f). By Lemma 3(a) the function \ fdΦ

is well defined and by Lemma 3(b) \ f+dΦ and \ f~dΦ are sublinear

functionals on Rm. With the Hahn-Banach theorem it follows that

G f+dΦ)(x) = sup \(x, y}: < , y} <;

and

Π f~dΦ)(x) = sup JO, #>: < , #> ^

for every α?ei2w. The set Γ±: = j^/eiί"1: < , y} ^ (\ / ^ Φ K O f is an

element of £fm and therefore \ /±ώΦ 6 Em. Since \ /dΦ = I f+dΦ —

I f~dΦ, I /dΦ 6 FTO. Obviously the equality

iπ{Φ)){af + βg) = α(ττ(Φ))(/) + β(π(Φ))(g)

holds and

^ |i/ - ^|| sup | ^

for all /, geB(Ω, j*f) and a, βeR. So π is well defined.
(2) Second we show that π(Φ) = ττ(Φ') implies Φ = Φ' for all

Φ, Φ' 6 BA(β, JK m). Let Φ, Φ' e BA(β, J ^ m) and π(Φ) = π(Φ'). Then
μx>Φ(A) = μx,Φ>(A) for every a?6Λw and i e j ^ The Hahn-Banach
theorem and Φ(A), Φ'(A) 6 £fm for every A e j y imply Φ — Φf.

(3) Third we have to show that for an arbitrarily chosen
9 6 £f+(B(Ω, j y ) ; F J there is a Φ e ,BA(β, j^< m) with π(Φ) = <p.
Choose 9 6^+(S(fl, j y ) ; F J . For every feB+(Ω, ,sx?) there exists



RIESZ-PRESENTATION 449

only one T(f)e£fm with φ(f) = s( , Γ(/)). Define Φ\ AS by Φ(A): =
2XχJ, where χ^ is the characteristic function of A. Since φ is linear
the equation

T(χAι + XΛ2) = T(χAι) + T(χA2)

holds for disjoint sets Aίf A2 e AS, i.e., Φ\A/ is an additive set-valued
measure with Φ(A) e ^fm for all A e SxK Moreover, by (1.2) and the
continuity of φ, it follows

δ(Φ(A), {0}) =* | |β(., T(χA))\\i

S sup{ | |^) | | r .^ 6 J5(β, j * 0 , ll̂ ll ^ 1} <

for all A e JK Therefore Φ is bounded. Let x e Λm. Then
gV ,B(i2, j ^ ) —> JK with <px(f): = (?>(/))(«) is a continuous linear func-
tional and by the Rfesz representation theorem ([7], Theorem 1, p.
258) there is a bounded, additive scalar measure λ* | Szf with <px(f) =
j/(iλβ for feB(Ω, Jtf). So

Λ, (A) - «(*, Γ(χJ) - φ.(χA) -

holds for all Aejtfί That means π(Φ) = φ.

B(Ω, Ssf)r denotes the topological dual of B(Ω, jz?) and ba{Ω, £f)
the set of all bounded, additive scalar measures v on Ĵ C So we get
the following corollary of Theorem 1.

COROLLARY 1. There is an isometric isomorphism between
B(Ω, J^Y and ba(Ω9 ̂ f) such that the corresponding elements ΎJ and
v satisfy the identity η{f) = \fdv for all feB(Ω,

Proof. We have to show only that each η e B{Ω, j&y determines

a veba(Ω, j*) such that \fdv = η(f) for feB(Ωfj^). Let ηe

B(Ω, AS)' and (<p(f))(x): = xη(f) for feB(Ω, AS) and xe[-l, 1]. φ

is an element of ^f+(B(Ωf AS); VJ and by Theorem 1 there exists a

ΦeBA(Ω, ASfl) with π(Φ) = ψ, i.e., J/rfft,, = xη(f) for feB(Ω,

and x e [ - 1 , 1]. Therefore

V(XΛ) = sup {y: y e Φ{A)}

and

= -inf {y:y
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for A 6 Jzf. This means that Φ(A) consists only of one point v(A)
and v is an element of ba(Ω, *s*f) Furthermore

for

Now let Ω be a topological space. A σ-additive set-valued
measure Φ\&(Ω) on the Borel sets &(Ω) of Ω is called regular, iff
μXiφ\&(Ω) is regular for every a?eΛm RGA(Ω9&(Ω\m) denotes
the set of all regular, σ-additive set-valued measures Φ\&{Ω) such
that Φ(B)e^fm for Be&(Ω). If Ω is a compact Hausdorίϊ space,
<2": - ίf(β) and if' the topological dual of i f then J2f
denotes the set of all φejέf+i^, VJ such that: there is a
with 11?>(/)|L ^

THEOREM 2. If Ω is a compact Hausdorjf space then the map-

ping π: RCA(Ω, &(Ω\ m) -> &\<&, VJ defined by (ττ(<P))(/): - J /iΦ

is one-to-one and onto for all m e N.

Proof. By Lemma 2 each Φ e RCA{Ω, &(Ώ), m) is bounded and
hence RCA(Ωy &<β)> m) c BA(Ω, &{Ω\ m). Analogous to (1) of
Theorem 1 one shows π(RCA(Ω, &(Ω\ m)) a £fj&, VJ. Let Φe
RCA(Ω, &(Ω), m). By Lemma 2 the σ-additive scalar measure
β = Σ5Ξi \μβi,Φ\ is finite and

therefore π(Φ)6^fJ.(^ ^ J . If Φf is also an element of RCA(Ω,
^{Ω),m)9 then π(Φ) = π(Φ') implies \ / ^ , Φ = \ / ^ , Φ ' for cceylm,
/ e ^ , and by the regularity of μXtΦ and ^,Φ. we have Φ = Φ'. Now
we show that for each φ e £fh+(rt?, VJ there is a Φ e RCA(Ω, &{Ω\ m)
such that π(Φ) = 9. Let 9 e £?*+(&, VJ. By the Riesz representa-
tion theorem ([7], Theorem 3, p. 265) there is a nonnegative, regular,

^•-additive scalar measure XΨ\^(Ω) with ||φ(/)||i ^ \ \f\dXψ for / e ^ .
Furthermore for each /eίf, / ^ 0, there is only one Γ(/) 6 £fm such
that φ(f) = s(-, T(f)). Let Be^(Ω). Since λ9 is regular there
exists a sequence flf /2, , in ^ such that 0 ̂  /Λ ^ 1 and

\ \1B - fn\ dXφ -+ 0. (1.2) implies



RIESZ-PRESENTATION 451

and by (1.1) there is a T(B)e£?m with δ(T(f%), 5*(JB))->0. Define
Φ\^(Ω) by Ω(B): = f(B). The definition is independent of the choice
of the sequence flf f2, , and, since φ is linear and δ(2\ + T8, Γί + ΓJ) ^

TO + δ(T2, T2) for Γ«, T[e£?m{i = 1, 2), we have T(J5, U ft) =
+ f(ft) for disjoint sets ft, ft e ^ ( β ) , i.e., Φ | ^ ( β ) is an addi-

tive set-valued measure with Φ(B) e £fm for J5 e &(Ω). Furthermore,
Φ is σ-additive, since by (1.2) and Lemma 4

), {0}) <S λ,( f t ) >0

for every sequence ft, i?2, in &(Ω) such that Bn I 0. Let α e ̂ ίm

and φx(f): = (φ(f))(%) for fe<g*. φx is a continuous linear functional
on ^ and by the Riesz representation theorem ([7], Theorem 3, p.
265) there is a regular, σ-additive scalar measure vx on έ%?(Ω) such

that \fdvx = φx(f) f o r / 6 ^ . If we can show the equality vx = μXiΦ,

then the regularity of Φ and π(Φ) = φ follows. Since I /dv^ <£ \ 1/leZλ̂

for fe&* and because of the regularity of i^ and λ̂  the inequality

is true for every open subset U of Ω and therefore

G*)

for Be^(Ω). If Be^(Ω) then there is a sequence / l f/ a, ••• in

such that 0 ^ /. ^ 1 and j \χB - fn\d\Ψ -> 0. By (*)

and therefore

= lim 8(α?, Γ(Λ)) - lim ϊ fndv, =
J

rca(Ω, &(Ω)) denotes the set of all regular, σ-additive scalar
measures v on &(Ω). From Theorem 2 we get the following corollary.

COROLLARY 2. If Ω is a compact Hausdorff space, then there
is an isometric isomorphism between r^f and rca(Ω, &(Ω)) such that

the corresponding elements η and v satisfy the identity τj{f) — \ fdv

for all /eΐf .

Proof. We have to show only that each η e^f determines a

verca(Ω, &(Ω)) such that [fdv = η(f) for /eίT.
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Let η e 9Γ\ Then there are positive linear f unctionals τjlf η2 e <g*'
with η = ηx — η2. For each i = 1, 2 we define (g>t(f))(x): = % Vi(f)
for / e ^ and a?e[—1, 1]. ^ is an element of ^f+(^, VΊ) and since

for /e<g% we conclude φιz£?\{&, Vx) for i = 1, 2. By Theorem 2

there is a ΦteRCA(Ω, &(Ω),1) such that \ fdμX)Φ. = x-η^f) for

a? e [-1, 1], / e ^ and i = 1, 2. Therefore ί fd{μuΦ. + μ~ι,Φt) = 0 for

every fe^ and the regularity of ^, φ . implies μuΦi = —μ-uΦ. for

i = 1, 2. Since

= sup {y: y e

and

= -iΏf{y:yeΦt(B)},

the set Φ ĴS) consists of only one point Vi(JB) for every
and vt is an element of rcα(i2, &(Ω)) for i = 1, 2. The σ-additive
measure v: = ^ — v2 is also an element of rca(Ω, &(Ω)) and

for every
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