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PATRICK SHANAHAN

1. Introduction. Let G,, denote the manifold of linear sub-
spaces of R" of dimension k> 0. Then G,, is compact and has di-
mension k(n — k). When = is even G, , is orientable and we may
consider the topological invariant Sign(G, ;). The cohomology algebra
of G, , over R was determined by Borel in [3] and thus in principle
the problem of computing Sign(G, ) is a problem in linear algebra.
In practice this is very awkward, and it is the purpose of this
paper to compute this invariant by a simpler method:

THEOREM. The signature of G, , 18 zero except when n and k
are even and k(n — k) =0(mod 8). In this case (with a conventional

orientation)
7]
4
k

7]

REMARK. When = is odd, G, is nonorientable and Sign (G, ;) is
not defined; however, for odd n Sign(G,, = 0, where G, is the
orientation covering of G, ,.

Sign (G, ) =

2. The Atiyah-Bott formula. We recall a few definitions.
Let X be a compact orientable manifold of dimension 4I. The
signature of X is defined by

Sign (X) = dim H* — dim H~

where H¥*(X: R) = Ht* @ H™ is a decomposition of the middle-dimen-
sional cohomology of X into subspaces on which the cup-product
form B(z, y) = {x Uy, X) is positive definite and negative definite,
respectively. When dim X is not divisible by 4 one defines
Sign X = 0.

More generally, let f: X — X be a mapping of X into itself.
When the decomposition of H*(X, R) is invariant under f one defines

Sign (f) = tr f*|H* — tr f*|H"

where f*: H*(X; R) — H*(X; R) is the homomorphism induced by f.
Sign(f) is then independent of the choice of H* and H~. When f is
homotopic to the identity mapping one obviously has Sign(f)=Sign(X).
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Now suppose that X is an oriented Riemannian manifold. If
J: X — X is an orientation preserving isometry, then at each isolated
fixed point p of f the differential df,: T,X — T,X is an orthogonal
transformation with determinant 1. Let 6.(p), ---, 6,(p) be the 2]
rotation angles associated with the eigenvalues of df,. When the
fixed point set of f consists of isolated points one has the formula
of Atiyah and Bott ([1], p. 473):

Sign (/) = (-1’ f:f ctn <@) :

fixed

We will apply this formula to a certain mapping f: G, ,— G,

REMARK. When f is an element of a compact group acting on
X (and this will be the situation in our application) the formula
above is also a consequence of the G-signature theorem of Atiyah
and Singer. (See [1], p. 582 or [6], §18.)

For simplicity of notation we confine our attention to the case
n = 28, k = 27; the remaining cases can be dealt with by minor
adjustments in the argument.

Let F: R* — R™ be the linear transformation which rotates the
ith coordinate plane P, = span{e,_ ., ¢x} (¢t =1, 2, ---, s) through the
angle «,, where 0 <a,<#. The transformation F' induces a smooth
mapping f:G,,— G,, which is clearly homotopic to the identity
mapping. If P, denotes the k-plane

PIZPi1®"'®PiT

where I = (4, -+, ¢,) is a multi-index with 4, <4, < --- <14, and
114, £s, then f(P,) = P,.

PROPOSITION 2.1. If the angles a, are all distinct, then the
points P, @G, are the only fixed points of f.

Proof. Let W be a k-dimensional linear subspace of R" not
equal to any P,. By regarding W as the row space of a matrix in
reduced row echelon form one sees that there exists a ve€ W whose
orthogonal projections v, on P, are nonzero for at least » + 1 indices
.

If F(W) = W, the vectors v, F(v), ---, F*(v) all belong to W,
and hence there is a nontrivial relation

S 0, Fw) = 0.

v=0

But this implies
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v=k
SiaF(w) =0
v=0

for all . Writing A; = cos (a;) + isin(a;) it follows that the k-
degree polynomial ¢(z) = a, + a& + --- + a,&" has zeros A, and \, for
each of the r+1 indices ¢ for which %, is nonzero. Since the «; are
all distinct, the coefficients a, must all be zero, which contradicts our
assumption. Thus when F(W) = W, the subspace W must coincide
with one of the subspaces P,.

3. The Normal angles 6,(p). We wish to show that with
respect to an appropriate metric on G,, the mapping f is an
isometry, and then compute the normal angles 6,(p) at the fixed
points p of f. We begin with some remarks about the differenti-
able structure on G, .

The smooth structure on G,, may be defined by identifying
G... with the left coset space G/H, where G = O(n) is the orthogonal
group and H = O(k) X O(n — k) is the closed subgroup of orthogonal
transformations which take span{e, ---, ¢} into itself. The space
O(n) may be regarded as the space of orthogonal n X m matrices
(and hence as a subspace of R™), or, equivalently, as the space of
orthonormal n-frames a = (a,, ---, a@,) in R". We denote the image
of an element @ €G under the natural projection 7: G — G/H by a,
and the image of a tangent vector ve T,G under dx: T.G — T:G/H
by ».

The elements of the tangent space T.G are determined by smooth
curves passing through the identity matrix e. By differentiating
the relation aa’ = ¢ one obtains the usual identification of 7.G with
the space of skew-symmetric n X n matrices. As a basis for 7.G
we may take the set {b,,|r <s} of matrices b,, having —1 in column
s and row », 1 in column » and row s, and 0 everywhere else. The
ordering {b, b, by, by, by, - - -} then defines a standard orientation for
G. More generally, the system of matrices {ab,,} may be taken as
a basis for the tangent space T,G at an arbitrary acG.

To obtain an oriented basis for the tangent space T:G/H we simply
restrict ourselves to vectors in 7,G which are orthogonal, as vectors
in R, to T,(aH). It is easily shown that the vectors ab,; with 1<i<k
and ¥ + 1< j < n provide such a system. The coherence of the
orientations will follow from the proof of Proposition 8.1. Note that
even when o and o' represent the same coset in G/H, the bases
{ab;;} and {a’b;;} will in general be different bases.

These facts all have simple interpretations in terms of curves
in O(n) and G,, For example, the tangent vector ab,, may be
viewed as the infinitesimal motion of the k-plane span{a,, ---, a;}
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towards its orthogonal complement obtained by rotating the vector
a, toward complementary vector a;.

PROPOSITION 38.1. There is a unique Riemannian metric on G, ,
for which the standard bases {ab;} are all orthomormal. The
mapping [ G,,— G,, is an orientation preserving isometry with
respect to this metric. Moreover, the system of normal angles {6,(p)}
18 the same at each fixed point p of f.

Proof. To prove the first assertion it will be enough to show
that for arbitrary n-frames a and o’ in SO(n) the matrix of transition
between the bases {ab;;} and {a'D,;} is orthogonal. Let a’ = ah, where
heO(k) x O(n — k). Then a'b,; = a’b ;™" = ahb ;B

Let hb,;h™ = 3, . Qijuub...  Clearly q = [g;;..] is the required
transition matrix. Writing

E 0
h:[o F]’ EcOk), FeOn — k),

we obtain ¢;;.,. = e..f,;, that is, ¢ = EQ F. Hence
Z qij,wlqij,»’#' = E evifﬂjev’if#’j
2% 7
= 2 .8 fuifuri = Ourluw ,
T4

which proves that ¢¢' =e. Moreover, it follows from detg =
(det E)**(det F)* = 1 that the various bases are coherently oriented.

To see that f is an isometry it is enough to observe that
dfi(ab;) = F(a)b,;.

Finally, let p =@ be any fixed point of f. We will compare
the normal angles at @ with those é.

Denoting F'(e) by ¢ we have

af.(b.;) = ¢b;; = ¢b, e,

since ce O(k) X O(n — k). On the other hand, f(@) = @ implies that
F(a) = ah for some heO(k) X O(n — k). Thus ca = ah and hence

dfi(a’bij) = F(a)bij = abi,-a_lca .

Writing out the matrices D and D' of df; and df; with respect
to the appropriate bases we have

(1) cb;iet = dfz(b-z_:) = % dzj,»m ’

(2) cabja ¢ = dfiy(ab;;) = > dl; b, .
Y, ft
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Let ab,;a™ = >, . Myj,.ub,., and m = [m,;,.]. Then (2) becomes

> Mgy = 3 3 dl; M,y
v

v, it 8,1t

Substituting (1) we obtain
EA mij,u.udwz,sta = ‘% d;j,u#mu/‘,sta;
for each ¢ and j. Thus md = d'm. Since m is nonsingular this

means that d’ is similar to d, and hence the normal angles of f at
p are the same as those at é.

PROPOSITION 38.2. At each fized point D of f: Gy, — Gypon the
normal angles {6,(p)} are the 2v(s — r) angles {a; = a} with 1 <1 < »
and r + 175 <s.

Proof. It is enough to compute the matrix m of df; relative
to the basis {b,;}. Since ¢ = F(e) e O(k) x O(n — k),

dfs(bi;) = F(@)byy = cbyyo™

for1<i<rand »+1<j=<s. Hence, as above, we have
My jris = CourCijr »
It follows that m is a sum of disjoint 4 x 4 blocks

[cos (a;)B — sin (aj)B}
Lsin (a¢;)B  cos (a;)B

where B = [gﬁf’ ((g:)) —E:)Isl Eg:g] Each such block is the image of
the matrix e¢*/B under the standard monomorphism U(2) — SO(4).

Since the eigenvalues of ¢**iB are e“*i**, the proposition follows.

4, Computation of the signature. We apply the Atiyah-Bott
formula to the mapping f: G, ,— G, described above. Since f is
homotopic to the identity mapping we obtain

Sign (G,) = (=1 S 1T etn'® ‘zi @)
p tel
fixed jedJ

Here I = (¢,-- -, 1,) is the multi-index which corresponds to the fixed
point P, = P, @ --- @P, and J is the complementary multi-index.

With the aid of the formula for the cotangent of a sum the
right-hand side may be written in the form

S I 1— 22,
tdea o5 Xi T T
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where z, = ctn®(a,/2). Since the formula is true for all systems of
distinet angles between 0 and 7 (noninclusive), it is true in particular
when the angles a,, a;, --- are taken between 0 and 7/2 and the
angles a,, a,, --- are chosen to be their supplements.

Consider first the case s even, r even. Then the indicated
choice of angles gives

Ly = Xy~
w4:x;1’
x, = o7,

For such a choice most of the terms in the sum vanish, since if
there exists an 7€l for which x; = z7* for some je€J, then

(1 —2)(@; —x) = (1 — a7'2) @' — ) =0.

The only terms which survive are those for which no ;! ean be an
x;; for such I, the factors may be grouped in pairs of the form

[A — @w)(x; — 2)7' ][ — 22N, — )] =1,

and to evaluate the sum we need only count the number of such
multi-indices I. Since these are precisely those multi-indices which
areza disjoint union of pairs (odd, odd + 1) the sum in question is
s
<r§2)'

If s is even and 7 is odd, some «;' must be an «,; thus in this
case no terms survive and the sum is 0.

When s is odd x, is not the inverse of any other z,. For even
» the contributing multi-indices are then exactly as in the first case,

giving a value of <(s ;/%)/ 2> for the sum. For odd 7 the contributing

multi-indices are obtained from those already mentioned by adjoining
the index s. The extra factors then occur in pairs of the form

[ = @) (@; — 2)7 A — 27'2,) (@7 — 2)" =1,

giving a sum of (8: i))/é)

As for the sign preceding the sum, (—1)' = (—1)¢" =1 for
those cases in which the sum is nonzero.

This completes the proof of the theorem stated at the beginning
of the paper.

5. Further remarks.
1. A similar argument may be used to compute the signature
of the complex Grassmannian G, ,(C) of complex k-dimensional sub-
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spaces of C*. The normal angles at a fixed point in this case have
the form a; — a,.
One obtains

U3
2
Sign (G, (C)) = [ & } k(n — k) even
\L 2
0

k(n — k) odd

(For a different approach to the computation of SignG, (C) see
Connolly and Nagano [4] (their formula contains a minor error due
to a counting mistake).) [Added in proof; see also Mong [5]].

2. The same line of argument used here to compute the signa-
ture of G,, may be used to compute the Euler characteristic KE(G, ).
The Lefschetz fixed point theorem is used in place of the theorem
of Atiyah and Bott, and instead of computing the normal angles
6,(p) one need only determine the fixed-point indices Ind, (f). Since
f is an isometry, these must necessarily be 1. One obtains

2]
e 4]

0 k(n — k) odd

k(n — k)even

3. The assumption that the angles «; used in the definition of
the transformation F are all distinet was necessary to obtain a
mapping f with isolated fixed points. When coincidences a; =
a,, = --- are permitted the fixed point sets become submanifolds of
G, of positive dimension. The G-signature theorem of Atiyah and
Singer (see [2] or [6]) may then be used to obtain information about

the normal bundles of these submanifolds.
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