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The identities valid in the ring of real quaternions are
defined in more general classes of rings with involution.
With one exception, these classes of rings satisfy the
standard polynomial of degree 4 and form a chain under in-
clusion. There are examples which show that these inclusions
are proper. An example of an exterior algebra shows that
a ring with involution whose symmetric elements commute
does not necessarily satisfy the standard polynomial of
degree 4.

We assume that a ring has a unit although some of the proofs
which follow do not require the existence of a unit in general.

Throughout the paper, R will be a ring equipped with an
involution *, i.e., a map R —> R such that for all x, yeR, (x + y)* =
x* + y*9 {xy)* = y*x* and x** = x.

The sets S and K of symmetric and skew-symmetric elements
of R consist respectively of elements x of R such that x* = x and
X* = — x.

The trace and norm of an element x in R are respectively T(x) —
x + x* and N(x) = xx*.

As usual, [x, y] = xy •— yx denotes the commutator, i.e., the
standard polynomial of degree 2 of x, y e R and the symbol Z denotes
the center of R.

We shall require that a ring R be subject to certain identities,
all of which are valid in the case of real quaternions. In other
words, we are extending the properties of real quaternions to more
general classes of rings.

R will be called a scalar product ring if for all x, y eR,

(1) T(xy) = T(yx) .

This definition follows from Dyson [1],
R is called a normal ring if for all x e R, xx* = x*x.
R is called a central trace ring if for all xeR, T(x) e Z.
R is called a central norm ring if for all xeR, N(x) eZ.
R is called a central symmetric ring if the symmetric elements

of R are central i.e., SaZ.
R is called a commuting symmetric ring if the symmetric

elements of R commute.
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Except for commuting symmetric rings, all the above classes of
rings satisfy S4, the standard polynomial of degree 4. A commuting
symmetric ring does not necessarily satisfy S4 even though its
symmetric elements satisfy a polynomial of degree 2.

Clearly, a central symmetric ring is a central trace ring; a 2-
torsion free central trace ring is a central symmetric ring.

We shall first study scalar product rings.
From (1) we see that a scalar product ring satisfies

(2) [x,v]* = -[x,v]

or equivalently,

(3) [**,»*] = [*,»].

A scalar product ring satisfies

(4) T([x, y]z) = T(x[y, z])

because T is additive and T(y xz) = T{xz-y). In particular, (4)
implies T([xf y\y) = 0 and hence

(5) [x, y]y = y*[x, y] .

THEOREM 1. A sacalar product ring R stisfies the standard
polynomial of degree 4.

Proof. Let α, 6, c, d denote any four elements in R. The standard
polynomial of degree 4 can be written in terms of commutators as
follows:

S<[a, δ, c, d] = [a, b][c, d] + [δ, c][a, d] + [c, a][b, d]

+ [c, d\[a, 6] + [*, d\[bf c] + [6, d][c, a] .

By identities (2), (4) and the Jacobi identity respectively,

S4[α, b, c, d] = T([a, b][c, d]) + Γ([6, β][αf d\) + Γ(

- T([[a, b], c]d + [[6, β], α]d + [[c, α],

- 0 .

As shown in [5], a normal ring is a scalar product ring and
hence satisfies S4. On the other hand, a 2-torsion free scalar product
ring is a normal ring. In [5], there is an example of a scalar
product ring which is neither 2-torsion free nor normal.

THEOREM 2. A central trace ring is a normal ring. Conversely,
a normal ring with 2 — 0 is a central trace ring.



SOME CLASSES OF RINGS WITH INVOLUTION 127

Proof. If R is a central trace ring then for all x e R, xT(x) =
T(x)x and hence xx* = x*x.

Conversely, if R is a normal ring with 2 = 0 then xx* + x*x =
0 for all xeR. We have for all x, y eR,

+ [x, y*]y , by (5)

0 = [x, yy* + y*y]

= 2/[«, V*] + 0

= [x, y*]y* + [a?, y]y* +

= [x, y* + y](2/* + y)

= [x, ί]ί where t = y* + y

= t[x,t], b y ( 5 ) .

The last two equalities imply

χt2 = txt = ί2X

that is, t2 e Z. Moreover,

Xtf = t2 Xt = t-txt •= t'tfx = fx

and hence f e Z.
As (1 + tf = 1 + t + t2 + f e Z, we have t e £. Hence, R is a

central trace ring.
A normal ring is not a central trace ring in general since we

have the following:

EXAMPLE 1. Let F be a field of char Φ 2 and R be the F-algebra
of triangular matrices of the form:

with

X —

X* =

a b
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-
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0
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0
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d
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-b
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-dl

C

-b

a

It is easy to verify that * is an involution on R and that R is a
normal ring. Clearly, R is not a central trace ring.

THEOREM 3. R is a central norm ring if and only if R is a
central trace ring.
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Proof, If R is a central norm ring then for all x e R we have
(1 + x)(l + x)*eZ which implies x + #* e Z.

Conversely, if R is a central trace ring and hence a scalar product
ring, we have for all x, y eR,

0 = [x, y + i/*]i/

+ [α, 2/*]2/ , by (5)

Hence y*yeZ for all #eiϋ and so J? is a central norm ring.

THEOREM 4. A 2-torsion free scalar product ring R with no
nonzero central nilpotent elements is a central symmetric ring.

Proof. For all a e S, x e K, we have by (3) that [α, x] = [a*, x*] =
— [α, x\. Since J? is 2-torsion free, [a, x] = 0; that is, S and K commute
elementwise. Consequently, ax = xa = — (α#)* 6 iΓ.

Hence for all a,beS,xeK, we have δα# = axb = abx which
yields [α, 6]cc = 0. Similarly, x[a, b] = 0. From (2), [α, 6] e iΓ and it
follows that [α, δ]2 = 0.

Moreover for all rei2, 2r[a, b] = (r + r* + r — r*)[α, δ] —
T(r)[α, 6] = [a, b]T(r) = 2[α, δ]r. Therefore [α, 6] 6 ^.

As [α, 6] is central and nilpotent, we have by hypothesis that
[af b] = 0 for all α, 5 e S, i.e., S is commutative.

Therefore 2[α, r] = [α, r + r* + r — r*] = 0 for all aeS,reR
which implies [a, r] = 0. That is, i? is a central symmetric ring.

Example 1 also shows that a 2-torsion free scalar product ring
needs not be a central symmetric ring in general.

A central symmetric ring is of course a commuting symmetric
ring. On the other hand, we have the following converse:

THEOREM 5. A semiprime commuting symmetric ring R is a
central symmetric ring.

Proof. Let aeS and xeR. Since [α, x + x*] = 0, we have

[a, x] — — [α, x*] = [α, a?]* and hence [a, x] e S. Since 0 = [α, ra*] =

x[a, x*] + [α, x]x*, we have x[α, x] = —x[a, 05*] = [α, #]#* = (o?[α, a;])*

and hence x[a, x] e S.

Therefore α x[α, x] = x[a, x] a — xa[af x] which yields [α, x]2 = 0

for all a e S, x e R.
For a e S, suppose t h e r e exists xeR such t h a t b = [a, x] Φ 0.

Then b2 = 0 and [6, #] 2 = 0 for all 2/ 6 JB from which we g e t (by)z =

b(yb)2y = &[&, τ/]2τ/ = 0. Hence bR is a r i g h t ideal of R in which t h e
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cube of every element is 0. By Lemma 1.1 in [2], R would have a
nonzero nilpotent ideal which is impossible for a semiprime ring.
Therefore [α, x] — 0 for all aeS and xeR, i.e., R is a central sym-
metric ring.

The above theorem has also been proved by Herstein in a different
context in [3, pp. 59-61].

A commuting symmetric ring does not necessarily satisfy S4 as
the following example shows:

EXAMPLE 2. Let F be a field of characteristic zero and V be
a F-vector space of dimension 4. Let R — A V = φ?=0 A*V be the
exterior algebra over V.

To simplify the notations, we write xy, instead of the usual
x Λ V, as the ring multiplication in R.

Since f\nV — 0 for all n > 4, we have

The additive homomorphism *:R—>R defined by

Jϋ — JOQ ~~~ JO-^ "~~ Jϋ2 ~T~ **>3 ~ ι •̂ -'4

for

x — x0 + x1 + x2 + a?3 + x±

where

» i 6 A T , i = 0,l, - - - , 4 ;

is an involution on R.

Indeed, if x = #0 + a?x + α?2 + x3 + #4, 2/ = 2Λ> + Vi + V* + % + ^

where ^ , 1/^ A T , i = 0, 1, , 4 then

and

It can easily be seen that

S= F0ATΦA4 F
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and that S is commutative. Hence R is a commuting symmetric
ring.

R does not satisfy S4 because if a, b, c, d is a basis of V over
F, then since [α, b] = α Λ 6 - δ Λ α = 2(α Λ &), it follows from (6) that

S4[α, 6, c, d] = 24(α Λ i> Λ c Λ d) ^ 0 .

The following example is a commuting symmetric ring which
satisfies S4 but is not a scalar product ring.

EXAMPLE 3. Let C be the field of complex numbers and R be
the C-algebra of 2 x 2 matrices of the form:

Lo
The map * defined by

v
1 , x,yeC.
x]

x yl* _ Γx y

0 x\ "" 0 x

is an involution on R. It can be verified that the symmetric elements
of R commute and that R satisfies S4. However, R is not a scalar
product ring since for

Lo -i] Lo o j ,
we have Γ(αδ) ̂  T(ba).

REMARKS. This paper is an improvement on a part of the
author's Ph. D. thesis written under the supervision of Professor
D. Z. Djokovic at the University of Waterloo, Ontario, Canada. The
author also wishes to thank the referee of this paper for his helpful
suggestions which result in the presentation of Example 2.
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