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Let G be a locally compact group and let m be a left
Haar measure on G. For 0 < p < oo, let L?(G) be the usual
Lebesgue space of functions f on G for which

NFll, = (Sa'f‘x) Ipdmw))”” <o

If T is a linear operator which takes L?(G), or a subspace
of L*(G), into measurable functions on G, then T is said
to be of weak type (p, p) if there exists a positive constant
C such that

mlx e G: | Tf(w)| = a} = ClIflI3/a? for feL?(@),a>0.

We are interested in the translation-invariant operators of
weak type (p, D).

To be more precise, for € G we define the left and right trans-
lation operators L, and R, by L.f(y) = f(xy) and R,f(y) = f(yz) for
functions f on G and y€G. An operator T will be called translation-
invariant if 7 commutes with each R,: TR, = R,T for each zeG.
We shall prove the following theorems.

THEOREM 1. Suppose that the locally compact group G 1is
amenable. If 0 < p <qg=2and T is a translation-invariant operator
of weak type (p, p) on L*(@), then T is a bounded linear operator
on LYG).

THEOREM 2. Let G be an arbitrary locally compact group and
suppose that 0 < p < 1. Then T is a translation-invariant operator
of weak type (p, p) on L*(G) if and only if T has the form 3.5, a,L,,
for distinct x,€G and complex numbers a, satisfying |a,| = 0(n~7).

To state Theorem 3 we need some additional terminology. For
a compact group G, let >, denote the dual object of G. For 0 <
p < e and a subset E of >, let L%(=L%G)) denote the closure in
L*(G) of the set of trigonometric polynomials with spectrum in E.

THEOREM 3. With notation as above, suppose 0 < p < q < 2 and
that T is a translation-invariant operator of weak type (p, p) on
Lt Then T is bounded on L%.
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Theorem 1 should be compared with a previous result of M.
Cowling [2]. Cowling’s result states that if 7 is a continuous trans-
lation-invariant operator between two rearrangement-invariant Banach
function spaces on G, then T is automatically bounded on L*G). We
note that the hypothesis of amenability is necessary to Theorem 1:
N. Lohoue has proved that for 1 < » < 2 there are translation-
invariant linear operators bounded on L*(SL(2, R)) which are not
bounded on L*(SL(2, R)) [5].

Theorem 2 is an analogue of the result of [7] for operators of
weak type. For the circle group 7, Theorem 2 was established in
[8]. But the methods of [8] do not seem to generalize beyond the
case of compact G.

Theorem 3 is a partial answer to question (ii) of [6]. We mention
that if 2 < ¢ < p = 2m(m = 2, 8, - - -), a translation-invariant operator
on L% may fail to be bounded on L% [1].

2. The proofs. We begin with some preliminaries from pro-
bability theory. Our probability space will be the unit interval I
equipped with Lebesgue measure, which we shall denote by P.

Fix q with 0 < ¢ £ 2. A complex-valued random variable ¢ on
I is said to be ¢-stable of type k& > 0 if its characteristic function
X, (2) = S exp(—1i Re [zg®)DdP(t) is equal to exp(—k?|z|)(z e C). Now

I
suppose that {g,)2, is a sequence of independent ¢-stable random
variables of type 1 defined on I. We shall need the facts that given
% and complex numbers ¢, -- -, ¢,,

(1) ¢.g, + -+ +¢,9, is g-stable of type (Zn lcm)w s
1
and

2) | |Seao|ape) = (Sier)"| lowrare, 0<p<q.

LeMMA 1. For fixed q with 0 < q < 2 there exists a decreasing
nonnegative function ¢, defined on (0, o) such that if g is a g-stable
random variable of type k on I, then

Pltel: [g)] = a} = g (k) .

Proof. This follows from the fact that g/k is g-stable of type
1 if ¢ is g-stable of type k.

Our next lemma is a result for operators of weak type analogous
to Lemma 2 of [4].
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LEMMA 2. Fix p and ¢ with 0 <p <q = 2. Lel T be a linear
operator of weak type (p, p) on a subspace S of L?(G). There exists
a positive constant C such that the following holds: If f(x, y) is a
continuous function of compact support on GxG such that f(-, y)eS
for each ye @G, then, for a > 0,

mlzeG: (| |T/¢, @ ram@) " z af

(3) ”
=c| (| 17@ v ran@) " dn@yar .
G a

Proof. For each m =1, 2, --. there exist m( = m(n)) pairwise
disjoint Borel sets E,, - - -, E, £ G and continuous compactly-supported
functions %, ---, k, € S such that if X, is the characteristic function
of E; and if

Sfulz, ¥) = g k(®)X(y) ,

then
(4) support (f,) & K for some compact K & G and all n, and

sup {|fu(, ¥) — f@x, ¥ |: (@, ) €G X G} = o(n™") .

In the following, C will denote a positive constant which is
independent of f but may increase from line to line. The hypothesis
on T implies that C may be chosen large enough to insure that

m{z e G: | Tf(-, @) — Tf.(, »@)| = a}
= ¢l |f@ v — £, Pim@)je @et a>0).
Integrating this inequality over G with respect to ¥, applying Fubini’s
theorem, and taking into account (4), we find that
m X m{(x, ) e G X G: |Tf(-, y)(@) — Tf(-, @) =z v} —0.

It follows that, by passing to a subsequence if necessary, we can
assume T7.(-, ¥)(x) — Tf(-, y)(x) almost everywhere on G x G. Thus,
by Fatou’s lemma,

lim | |77.(., )@ *dm@) 2 | | T7C, @) 'dm(y) for almost
all zeG .

Let ¢, be the function in Lemma 1 and let a, 8 >0 be arbitrary.
Since ¢, is decreasing, it follows from the inequality above and
another application of Fatou’s lemma that
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{90 (01 177C, @ dmiy) )am)
) <ti~ | 6. (6] | 71,0, D@ 1iamiy) Jame@) .
Fix a number M > 0 such that 4,(M~%) > 0. Then

| T7C, 9@ ram@) 2 a

implies

salles M1 [ 177, w)@) Fam@)) 2 o)
With 8 = a/M in (5) it follows that

m{wee: | |T7C, v(@) Pdm) z o}
< (a1 lim | o, (/20 [ | 1770, 0)(@) ) )amz)
and so (3) will be established when we show
tim { g, (& /| 17,0, 0) @) dm))dmia)

) = cg | ({ 17 wram@) ) am) .

To this end, suppose that A, ---, k, are functions in S and that
9y -+, 9. are independent g-stable random variables on I of type 1.
For each t el we have

mlzeG: } )y gi(t)Th,-(x)i z 8} = co SG ‘ by gi(t)hi(@lpdm(w) :

Integrating this over I, using Fubini’s theorem, and recalling (2),
we find that

SGP{t el |$ gi(t)Thi(oc)‘ = 8} dmz)
( 7 ) m »/q
= cg | (S in@) ) dm) .
For fixed xe G, (1) implies that >." ¢,(t)Th,(x) is symmetric g¢-stable
of type & » | Th(x)|9)"*. Thus Lemma 1 and (7) yield

[ o6 | S 1Th@I )amiz) = ¢ | (3 1h@) 1) dmiz) .

Now (6) follows from (4) and the representation
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m
fal2, ) = 213 k(x)X(y) .

LEMMA 8. Fix p and q with 0 < p < q < 2. Let S be a subspace
of L*(G) such that R,S Z S for each x € G and let T be a translation-
invariant operator of weak type (v, p) on S. There exists a positive
constant C such that the following holds: Fix a compact symmetric
KC G and a nonvoid compact set US G. Suppose u is a compactly
supported con tinuous function such that w =1 on KKU. Suppose
heS is a continuous function supported in K such that

(8) u-(R,h)eS, ye@G.
Then

(1,1 e ram@)™ = ¢ | |u@ram@)(| (@ ram@) prmv) .

Proof. Let V = (KU)™*. By the translation-invariance of T we
have, for arbitrary z G,

(9) | 1T@EORC»@Rrdm) = | |T@yh e Fdm) -

Since y € V implies u(-¥™) = 1 on the support of %, it follows that
the latter integral is

(10) |,| Than ram) = | | TR L@ v Fdm@)

Here X, denotes the characteristic function of the set V. Now if
x€ U, then X,(x7'y) =1 as long as ye K = K*. Thus, for z€ U,

[ Tr@)Idm@) < | | TR@L @) Fdm) -

Together with (9) and (10) this gives

1/q

([ 1mn@yram@))” = (| 170D @ Fam@)
if xeU. It follows that

mioe s (| | @ v)@ rdm) )
11
" z (| 1@ ram) )"} 2 m) .

On the other hand, Lemma 2 <With flx, ) = w(@)h(zy) and a =
1/
(g | Th (y)}%lm(y)) “) implies that the LHS of (11) is
K
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= ¢ (| ju@hey) an@) " am@ [ (] 170 ranw) )" .
That is,

»/q

w(0) = ¢ | Juw) ldme)({ s ram@)” [(] 110@) rdnw)”,

which completes the proof of the lemma.

Proof of Theorem 1. Let h be any continuous compactly-sup-
ported funection on G, and let K be any compact symmetric subset
of G containing the support of 4. A characteristic property of
amenable groups [3] implies that there exists a compact subset U of
G with m(KKU)/m(U) < 2. 1t follows that there exists a continuous
compactly-supported function # on G with =1 on KKU and
Sglu(x) [Pdm(x)/m(U) < 2. Taking S = L*G) in Lemma 3 (it is obvious
that (8) is satisfied) we conclude that

»/q

(|1 nw)ram) )™ = 20({ (v pamw)

Since K can be any compact symmetric subset of G containing the
support of &, it follows that || Th||? < 2C||k||2. Since h is an arbitrary
continuous compactly-supported function on @, the theorem follows.

Proof of Theorem 3. We apply Lemma 38 with S = L% and K =
U=@G. Then v =1 on G and so (8) is satisfied for any continuous
heS. Since such % are dense in L%, Theorem 3 follows immediately
from the conclusion of Lemma 3.

To establish Theorem 2 we require two more lemmas.

LEMMA 4. Let G be a locally compact group. Let V< G be a
measurable set with 0 < m(V) £ 1, and fix r with 0 < r < 1. Given
a positive number C, there exists another positive number C, such
that 1f F is a nonnegative measurable function on G satisfying

12 mlpea | Fonwninw zal = cjar @>0),
then
| Fwim@) = C, .

Proof. Choose nonnegative measurable functions F, on G with
F,1Fand S Fo(@)dm(z) = a, < . Write
G

H) = Ft(@) = | F@)l(u™s)dm()
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and, similarly, H, = F}X,. Then H, < H, so m{x: H,(x) = a} < C)/a’
by hypothesis. Also H, < a,, SO

a,m(V) = San*XV(x)dm(x) - SGHn(x)dm(x) = Sm{x H,(2) = ajda

< Y”Cla-rda = Cat )L — 1) .
0

Thus
a, = [C/m(V)A — )" =C,,
and so
| Fwm) = ¢,
also.

LemMMaA 5. Let {f.}x: be a sequence of monnegative measurable
Sfunctions on G having the same distribution function F(a) =
mize G |f.(x)|=ala>0). Fix p with 0<p<1. Then if a>0 we
have

(1) m{zeG: 307, (@) = a}  Cllf e,
where C is a constant depending only on p.

Proof. Let C denote a positive constant depending only on p,
but which may increase from line to line. Fix a > 0. For n =
1,2 --- let X, be the characteristic function of the set

{x e G: f(x) > an''?}

and let X, be the characteristic function of {x € G: f,(x) < an'?}. We
will establish (14) by estimating separately the two quantities

mize G 3 n of, (o)) = a} and
o m o e G: Sn s, @) 2 b
We have

m v e G: B0 f @) 2 o} < Simlze G fi@) > an'?)

= a3 arumiz e G: ant® < fix) < a(n + 1)V?) < a~?||f,]2 .

To estimate (15) we begin by writing H(\) = F(\'?), so that
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|12 = —ijdH(x) for each n. Then

| St o @tEdne = S o+ 0| f )
.6 = —Tz (n + 1)~v» S:“pxlfpdﬂ(x) < —Sfy—w S:apx””dﬂ(k)dy
- —-Sfy_”" S:px””dﬂ(x)dy - S:pw g;py-wdydﬂ(x) .
Now (15) is
=Ca | S+ D@ L@dm@)

so, by (16), it suffices to establish

an —a |y {wraEOdy < CII A3
and
8 —a | e |l g dy dHO) S Cllfile

For (17) we note that

_ S:pxl’f’dﬂ(x) - S( _ f@)dm(@)

f1(2)

and

at S flxydm (@) < a* Fr@)dm() .

TGRS S{fl(a:)§a)

Since ry‘l”’ dy < oo, this establishes (17). On the other hand
1

S:O py—llpdy — (p—l — 1)&1—1/1)“1-—1; .
Thus

—a " |7 yrdydHOY < ~Car | MHO = Cllfilzfar

4

This is (18) and so the proof of the lemma is complete.

Proof of Theorem 2. The “if” part of Theorem 2 is an immediate
consequence of Lemma 5. So suppose T is a translation-invariant
operator of weak type (p, p) on L*(G) (0 < p < 1), and we will show
that T has the form X5, a,L,, |a,| = 0(n™?). Fix q with 0 <p <
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g < 2. We will begin by showing that 7 is “locally bounded” on
LY(G).

Let U and V be neighborhoods of the identity in G with U
relatively compact, V symmetric, V2 C U, and m(V) < 1. Let u be
a continuous function with compact support satisfying w(x) =1 for
xze U, and let & be an arbitrary continuous function with support
contained in V. According to Lemma 2, where we take S = L*(®)
and f(z, ¥) = u(x)h(xy), we have

(19) med: <SG' TR 1)@ dm)) " = 6}
= ¢ | Juw Pam@)(| |a@) ram@)) " [ 82 8> 0).

Since T is translation-invariant,
[ 1 T@RC @ Idm@) = | 17@y R e Fam)

Since V* S U, V is symmetric, and A is supported in V, it follows that
w(-y™*) is equal to 1 on the support of % as long as ye€ V. Thus the
last integral is equal to

|, Th@n) ram@) = | | Th@) 17 @ 2)am)
where we have used V = V™. Thus
SGI Th(y) |y (¥ x)dm(y) = SGt T(u(-)h(-9))(x) |*dm(y) .
With (19) (where we substitute a for 8% we have
m{se @ | | Th@) 17 @ n)dnw) 2 of

= 0| Jutw) pam)(| |aw) 1rdm@)" e

Taking » = p/q, C, = C Salu(w)l"dm(x), and F(y) = |Th(y))* in Lemma
4, we see that ||k||; <1 implies ||Th||7 < C, for some fixed positive
number C, and any continuous . supported in V. It follows that

(20) TR} = CollR |l

holds for any measurable h supported in V. (Thus T is “locally
bounded” on LYG).)

If 0<p<qg<l, it follows from (20), from the translation-
invariance of T, and from the subadditivity of || - ||? that T is actually
bounded on L*G). Now the theorem in [6] shows that T has the
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form 33’ a,L,, for distinct x, € G and numbers a, satisfying > |a, | <
. Using the fact that T is actually of weak type (p, p), it is easy
to see that

card{n: |a,| = a} = 0(a™®) (a>0).

Thus if {ja}|}7_, is a decreasing rearrangement of the sequence
{la,|}o-, it follows that |a}| = 0(»n~"?). This completes the proof of
Theorem 2.
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