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We will study symmetric shift registers over the field
GF(2) = {0,1}. The symmetric shift register Θs: {0, l}n -> {0, l}n

corresponding to a symmetric polynomial S(x2, •••,#„) is
defined by

ΘS(QΊ, •••,»«) = (tt2> * *> α»n) where α n + 1 = αx + S(α2, , αn) .

ί> is a period of 4̂ e {0, I}71 with respect to #<? if ΘP

S(A) = A. If
p is the least period of A, then A -> ΘS(A) - > . . . - > 0J(A) = -A
is the cycle corresponding to A. This is the first of two
papers where we will determine in a constructive way (for
each S):

1. The minimal period for each A e {0, I}71.

2. The possible minimal periods.
3. The number of cycles corresponding to each minimal

period.

Kjeldsen [1] and the author ([2], [3]) have earlier proved some
partial results about these symmetric shift registers. In this paper
we will define a block structure for each A e {0, l}n and study how
this block structure alter by applying θ8. This will be the basis for
the forthcoming paper. Moreover, as an easy application we will
for each A find a period (not necessarily the least). This application
demonstrates how the block structure can be used. By refining the
proof of this application we will determine the minimal periods in
the next paper.

Now we give a summary of the paper. In §2 we introduce some
notation and mention how the problems are reduced to the case
S = Ek + + Ek+P where Et is defined by Et(a29 , αn) = 1 if and
only if a2 + + an — i.

In § 3 we define the block structure for each A 6 {0, l}n and
formulate Theorem 3.2 which determines periods. In §4 we prove
that A is uniquely determined by its block structure. Moreover,
we study how this block structure change by applying θ8. We also
prove Theorem 3.2 by finding a p such that the block structure of
respectively A and ΘP

S(A) are equal. In the end of §4 we mention
how the lemmas will be used in the forthcoming paper. In §5 we
prove some of the lemmas in §4.

The author is grateful to Kjell Kjeldsen who inspired him to
study symmetric shift registers.

2* Preliminaries* First we introduce some notations: α, δ, c, d
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denote the integers e {0,1}. e, f, g, ••• denotes the integers ^ 0 . We
denote finite sequences of the integers 0 and 1 by capital letters
(also the empty sequence). The letter B will always denote a block
(Definition 3.1).

For s 6 {0,1, } we define s(A) = A A where A appears s
times.

We let lt = 1 l(resp. Ot = 0 0) denote a string of t con-
secutive Γs(resp. 0's).

We denote a = (alf , an) e {0, l}n also by a — at an. The
weight w(a) of a vector a — (a19 , an) is defined by w(a) — Σ?=i α*

Suppose A = ax an and C = di α̂  is a piece of A. We
define the left (resp. the right) position of C by l(C) = i(resp. r(C) = j).

Moreover, we refer to the index of notation. Next we formulate
Lemma 2.1 and Theorem 2.2 in [2]. These results reduce the problem
to the case S = Ek + + Ek+P. Let Sp be the homogeneous sym-
metric polynomial of degree p in the variables xif •••,&». Then we
have ([2, Lemma 2.1])

k=o\p )
(mod 2)Ek

k=o \p j

where ί j denotes the binomial coefficient. We define intervals in

the set of the integers Z in the usual way by

[q, t] = {i: ie Z and q ^ ΐ <̂  t) .

Let S be the symmetric polynomial in the variables x29 , xn given by

and M = \J{=1 [qu tt] where qt and tt are integers such that ί« + 1 <
g<+1 for i e {1, •••,/- 1}. Then we have by [2, Theorem 2.2]:

If w(α) 6 [g4, tt + 1] for some i, the periods of α with respect to
respectively the difference equation xn+1 = xt + S(xi9 •••,»„) and a?Λ+1 =
α?! + (Eq. + + Et.)(x2, , xn) are equal.

Otherwise, the periods of a with respect to the difference equation
xn+1 = &! + S(a?a, , xn) and α?n+1 = x± are equal.

Theorem 3.2 solve the case S = Ek + + ϋ^+j,. For each sym-
metric S we can therefore determine a period for each A e {0,1}\

3* The main definition and a theorem* The main concept in
this paper is the blocks of A e {0,1}\ We define the blocks with
respect to p in A by an inductive procedure. Roughly, the blocks
are defined as follows:

( 1 ) For 1 <j i ^ p, ί consecutive l ' s is an i-block.
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(2) More than p consecutive Γs constitute a (p + l)-block.
This is the correct definition if the distances between the blocks are
"sufficiently" large. Here is an example with p = 4

A = oiioooooiiioooomnioooooommi
2-bϊock 3-bϊock δίkκΓk δΐlock

The general definition is more complicated. The main difficulty is
that the blocks can contain subblocks.

An example will illustrate this point: We let θ — θs where
S = EB + E4, and

A = 00011110001000

By direct calculation or by using Lemma 4.3 in [2] we can prove

Θn+\A) = 00011110010000

= 00011110100000

ff**+»(A) = 00011101100000

Θ« +*)(A) = 00011011100000

- 00010111100000

= 00100111100000

Θ
7{n+2)

(A) = 01000111100000

ff*»+*) (A) = 10000111100000

0
8(w+2)+2

(A) = 00011110000001

βn{%+2)+\A) = ooomioooiooo

We have underlined the 2-blocks in our example and put a * above
the 1-blocks where the blocks are defined as in Def. 3.1. The ex-
ample also gives an indication of how we can determine the period
of A by studying the movement of the blocks. We need more nota
tion. If A = ax an and i <; j, we define

fi{j) — (the number of Γs in αt a3) — (the number of 0's
(3.1) . .

m cii α5 ) .

If C = αs at, then we define

(3.2) f\C) = fί(t) .

Moreover, we let fA

c denote ffiC). When there is no room for
misinterpretation, we write / = fA.
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(3.3) t G D means t e [l(D\ r(D)] .

(3.4) C < D means that C is contained in D and C Φ D .

Now we will define the blocks. That a block Bt is on level i
will mean that the block is contained in a chain of blocks

(3.5) Bt> J?2 > B^ > Bt where £, is on level j .

We divide the definition of the blocks into two parts by first
defining 1-structures and 0-structures of A. A 1-structure (0-structure)
is a generalization of q consecutive Γs (respectively 0's) which is
succeeded by q 0's (respectively Γs). a A b denotes the minimum
of a and 6.

DEFINITION 3.1, part 1. Suppose A = αx an e {0, 1}\
(a) Suppose ar = 1. Let s be the maximal integer such D =

αr as satisfies

(1) 0 < / ( α r . . α i ) ^ / ( α r . . . α s ) for ie{r, -..,β}

and

(2 ) If r^i^j^s, then /(α< α, ) > - ( p + 1) .

By definition D is a 1-structure with respect to p.
(b) Suppose αr = 0. Let s be the maximal integer such that

D = αr as satisfies

α.) for ie{r, . ,β}.

By definition i) is a 0-structure.

DEFINITION 3.1, part 2. (a) Suppose A = αx αH e {0,1}%. We
define the blocks in A with respect to p by induction with respect
to the level of the blocks in the following way: (The 1-structures
are defined with respect to p.)

Level 1. We decompose A in the following way A = 0iίB10i2"
Bm0im+ι where B3 is a 1-structure. By definition Blf •••, Bm are the
blocks in A on level 1.

Level 2. Suppose B is a block on level 1. We decompose B in
the following way

(3.6) B = 1,^1,^2 Bmlim+1 where B5 is a 0-structure .

By definition Blf , Bm are the blocks in A on level 2 which are
contained in B.
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Level 3. Suppose B is a block on level 2. We decompose B in
the following way

(3.7) B = Oiβfl^Bt - Bm0im+1 where B3 is a 1-structure .

By definition Blf , JBW are the blocks in A on level 3 which are
contained in B.

We continue in this way. If ie{3, 5, 7, •••} and J3 is a block
on level ί, we decompose £ as in (3.6). If ίe{4, 6, 8, •} and JS is
a block on level i, we decompose 5 as in (3.7).

(b) Let B be a block in A on level i. Then we define level(J5) =
i, type CB) = I f(B) | Λ (p +1) and m(B) = | / ( £ ) |. Moreover, if type (B) =
q we say that B is a #-bloek or that B is a block of type q.

Here is an example with p = 3.

0 0 1 1 1 1,0 OjijQ 0,1 1 1 1

B 1

B2

0 0 0 0 0.1 1 1j0|1 1 1 1

B 6

B 5 B 7

B 3

type (Bx) - type (J?4)=type (B6) = 1, type (Bβ)=2, type (52) = 3, type (53) =
type(£7) = 4, level (J58) = level (J5β) = level(B7) = 1, level (B2) = level(B4) =
level (Bβ) = 2 and level (Si) = 3.

We observe that the decomposition in (3.5) is unique and that
typeCBj ) > type(5 ί + 1) for j = 1, , i — 1. Here is an example with
p = 4

2-block

i l~ 00000.111 l i00 0 lll100 |1111000000

I 3-block

5-block

The main part of our proofs is how the blocks move by applying
0Ek+...+Ek+p> We will get that the movement of a i-block, where
j < p + 1, can be characterized by an equation (j).

We associate p equations to A as follows:

Let 7j — the number of j-blocks in A with respect to

P(i = 1, •• ,ί> + l). Let

«i = w + i — Σ 2 m ί n ί i Λ 7t

We define the equations (1)—(p) as follows:

(p): apXp = Γ .
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(p—1): ap^Xv_, = 2Y + 2ypXp .

(p-2): ap_2Xp_% = 3 F + 2Ύ,_1X,_1 + 47.X, .

(p—3): α,_^Γ,_, = 4Y + 27P_2X3,_2 + 4γ,_1X,

(2τ2X2

If 74 = 0, we replace equation (i) by Xt = 0. In this way we
obtain a system of p equations associated with A and with respect
to p, i.e. for je{l, •• ,p} the equation (j) is defined by

aάXά = (p + 1 - j)Y + Σ 2τ«(i - j)Xi if Ίά Φ 0 .

X ; = 0 if 7; = 0 .

Suppose k, p and w satisfies 0<k<*k + p<n. We define as in
t h e introduction θ(xlf , ccΛ) = 0Ejc+...+Ek^p(xlf - - -, xn) = (#2, ••• , #*+i)
where

® +i = a?i + (^* + + Ek+P)(x2, . , a?J .

We say t h a t Pi7J£ is a period for A e {0, l}n wi th respect to θ
if 0P*Λ(A) = A.

THEOREM 3.2. We determine the periods with respect to θ =
θEk+'"+Ek+p in this way:

Let A 6 {0, l}n and w(A) = k + p + 1. Suppose A contains 7*
i-blocks with respect to p for i = 1, , p + 1.

(a) Suppose ΎP+1 Φ 0 cmώ 7* Φ 0 /or αw integer i < p -\- 1. Suppose
Y, Xlf , Xp are positive integers satisfying the system of equations
associated with A and with respect to p. Then

PER = (n + p -

is a period for A.
(b) If there exists only one j such that Ύj Φ 0, then PER —

n + j is period for A.

We prove this theorem in §§4 and 5. If w(A) = sup* w{θ\A))1

we can always suppose w{A) — k + p + 1 and 7̂ +1 Φ 0 by Lemma 5.6
(b) and (a) respectively.

By putting Y = at ap we get a solution of the system of the
equations in Theorem 3.2. Moreover, it is very easy to see that a
least solution exists: Suppose Y, X19 , Xp and Y*9 X?, , X% are
two solutions and that Yt^Y*> By equation (p) we observe that
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Xp <; X*9 by equation (p—1) we then get Xp^ <: X*^ and etc.
The least solution can be obtained in this way: X% — 1 and Yp = ap

is the least solution of equation (p). Let r be the least integer r
such that t = (2Y9 + 2ΎPX

P

P) r\ap_λ is an integer. Put Yp~ι = r- Ϋ*9

XI'1 = r X* and X*z\ = t. Then X*z\9 X p and Γ*"1 is the least
solution of the equations (p) and (p—1). By continuing in this way
we will finally obtain the least solution Y\ XI, , X\ of all the
equations.

4* The properties of the block structure* In this section we
will introduce a lot of lemmas about the block structure and prove
Theorem 3.2.

The Lemmas 4.4, 4.6, 4.7, 4.8, 4.10, 4.11, 4.12 and 4.13 are proved
it the next section.

First we define a measure d which measures how much to the
left a block is in A e {0,1}*. We do the convention that B always
denotes a block, s At denotes the minimum of s and t. For 1 ^
s ^ t <; n and A = at an e {0, ί\n we define

dq(A, β, t) = dg(as αt) = ί - β + 1 - Σ ίί Λ type(£*): s ^ Z(B*) ^ ί}

- Σ to Λ type(J5*): s ^ r(B*) ^ ί} .

If B is a block such that type(JS) = q and l(B) > 1, then we define

d(B) = d^α!

We observe that dq(B) and d(B) are different by definition.
Moreover, if 1{B) = 1, then we define d{B) = 0. This measure is very
important.

The next two lemmas describe some of the properties of the
block structure. For example, Lemma 4.1 gives for one thing that
each 4e{0, l}n is uniquely determined by its block structure.

LEMMA 4.1. (a) Suppose w(A) = k + p + 1 and A contains yt

i-blocks (i = 1, , p + 1).

There exists m ^ 0 such that m + y\i-y = k + p + 1

( i ) p+1 ^ ι

and m + 2 y i τ, <% + « + ! .

Suppose B[, , 1^. are ίfee i-blocks in A numbered from left to right.
We put t\ = d(B})(i = 1, , p + 1; i = 1, , 7*) a^d ί?+2 =
(p + 1) where m{B) = |/(B)| as m Definition 3.1.
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0 ^ t\ <; ^ t\. ^ at for i — 1, , p .

0 ^ ίj+1, 0 ^ ί?+2 /or i = 1, , 7,-u .

(2 ) -{ίj+1 + ί j + ϊ ^ ίj+ί for j = 1, , 7P+1 - 1 and

= m .

(b) Suppose m, 7* cmcί ίj satisfy (1) ami (2) m (a). Γ/te^ there
exists one and only one A e {0, l}n such that w(A) = & + p + 1 cmeZ
αZί δZocλ s m A cα^ be numbered by (from left to right) B)(i = 1, ,
p + 1; i = 1, , τ<) sucfc ίΛαί type(B}) = i, t} = d(B))(i = 1, - ,
p + 1; i = 1, , 7,) α^d ίΓ 2 = mC^Γ1) - (P + 1) /or i = 1, - , 7,+1.

(c) By definition m, Ίi and t\ satisfy (2)' if and only if m, yt

and t{ satisfy (2), t[> 0 for i = 1, , p and ί ^ + ί ζ ^ - α p + 1 .

J/ w(A) = k + p + 1, A ends with a (p + l)-block and starts with
0 or a (p + lyblock, then m, τ< αwd ίj m (a) satisfy (1) αm£ (2)'.

// m, Ίi and t{ satisfy (1) and (2)', ίfeβ corresponding A e {0,1}W

ίw (b) ends with a (p + l)-6iocfc α îd starts with 0 or a (p + l)-block.

Proof of (a) αwcϊ (b). We suppose first that A ends with a
(p + l)-block denoted by BEND. We call a piece 0*1* = ^Irrespectively
1.0* = Bfii) of A, such that 5* = O^resp. J5* = 1*) is an i-block in A,
an i-component of A. We decompose A in this way:

A = Kλ(A) > KIA) > , KP+1(A)

where Ki+1(A) is constructed by removing all the i-components in
Ki(A). Ki{A) will only contain blocks of type ^i. To each g-block
B there corresponds a chain of ^-blocks

B^K^B) > >Kq(B)

where Ki+1(B) is constructed by removing all the ί-components in
Kt(B). By the definitions of m(B) and d(B) we get easily m(Ki{B)) =
m(B), type(^(B)) = type(J5) and d(Kt(B)) = d(B).

By the decomposition method we get

the length of KP+1(A) = n -2Σii 7i .

the number of Γs in KP+1(A) = k + p + 1 -

We put m = t?+2 + + t ? ^ . Since KP+1(A) only contains (p + 1)-
blocks we observe
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t h e length of Kp+ι(A) = l(Kp+1(BEND)) - 1 + m(fiEND) .

The number of Γs in KP+1(A) = m + (p + 1)7P+1. By combining
these equations we get

(4.1) n - 2 Σ i τ4 = l(Kp+1(BEND)) - 1 + m(J5WJ)) .

fc + p + 1 - Σ i Vi = (p + l)7p+i + m .
ί=l

Now we will prove (1). The last equality implies m + Σ*=ί^ <̂ —
A + 2> + 1. We observe that

^ Σ ^ ( ^ ^ ( 5 ) ) + (p + 1): type(iS) - p + 1 and

= m + (p + l)(2τp+1 - 1) - m{BEND) .

Hence, by (4.1)

Λ - 2 Σ H = l(Kp+1(BEND)) - 1 + m ( S ^ ) ^ m + (p + l)(2τ
< 1

, + ι - 1)

and (1) follows. Now we do some observations. Suppose C is an
ί-component which we remove from Kt(A). There are three pos-
sibilities:

1. If KIA) = C , then C = 1A
2. If ^(A) = - - - C, then C = 0,1,.
3. Suppose Kt(A) = C . If there is a 1 in position l(C) — 1,

then C ~ 0,1,; otherwise C = 1,0,. Moreover, Z(C) — 1 is not among
the first i positions in a block and not either among the i positions
which succeed a block of type > i.

Moreover, we observe

a{ = n + i — 2 Σ i ' T i — 2i (the number of blocks in Kt+1(A))

— in — 2 Σ i 7ij — i (2 the number of blocks in Ki+1(A) — 1) .

Hence,

α, = the length of Ki+ί(A) — i (2 the number of blocks^in
( 4 2 )

By using these observations we will now construct K^A) from
Ki+1(A). We must put each i-block in between the right positions
in Ki+1(A). We pass over the first i-positions in each block and the
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i-positions which succeed each block in Ki+ί(A). We number the
remaining positions from left to right by 1, , a{ (the number
of enumerated positions is at by (4.2)). Suppose B is an i-block
in A such that 0 <: d(B) S OLt. We consider the following 3 possi-
bilities:

1. If d(B) = 0, we put 1,0, in the front of Ki+ι(A)., Then
KKB) = 1,.

2. Suppose 0 < d{B) < at. Suppose position r in Ki+1(A) is
numbered by d{B). If there is a 1 (resp. 0) in position r, we put
Oilftresp. lfit) in between the positions r and r + 1 in Ki+ι{A). Then
Kt(B) = O^resp. Kt(B) - 1,).

3. If d{B) = ai9 we put 0,1, in the end of Ki+1(A). Then Kt(B) =
0,. (The last position in Ki+1(A) is always numbered by at.)

If there are several i-blocks B such that d(B) = q, we put the
i-components corresponding to these blocks in between the same
positions.

Now we prove that this construction method is correct. Suppose
we are in Case 2 (we treat Cases 1 and 3 analogously). We observe
that position r is numbered by

r — i (the number of end positions of blocks 6 {1, , r})

), 1, r) .

Wherever we put the other ΐ-blocks into Kί+1(A) we get d(Kt(B)) =
dt(Ki+ί(A), 1, r). Hence,

d(Kt(B)) — the integer which position r is numbered by = d(B) .

We observe that 0 ^ d(B) ^ α, for all ί-blocks. If d(B) < 0 or
d(B) > aif there is not any appropriate place where we can put
K<(B) into Kt+ί(A).

We will now prove (2). 0 <; t[ ^ ^ t*. $ α, follows easily.
By definition m = ίf+2 + ••• + t ? ^ . The remaining claims in (2)
follows by studying Zp+1(J.). We let l(C) denote the left position
of C relatively KP+1(A). Let

s = l(KP+ι(B>s+
1)) and t = l(Kp+ι(Bftl)) - 1 .

Then we observe that

dp+ί(Kp+ι(A), β, *) ^ mίK^Br1)) - (p + 1) = ίJ+>

Hence,

ίjΐί = d(ί,+ι(S5ίi)) = d(Kp+i(Br)) + d(Kp+1(A), s, t) 2: ίj+ι + *Γ2
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Moreover,

ap+1 = the length of KP+1(A) - (p + l)(2τJ,+1 - 1)

= [l(Kp+ι(BEND)) - 1] + m(BEND) - (p + 1)(27P + 1 - 1)

+ [m(BEND) - (p + 1)] -

and (2) is proved.
(b) follows by constructing A step by step: KP+1(A) —• .K2(A) —>

X"i(A) = A as in the proof of (a). The uniqueness follows from the
construction method.

Finally we suppose that A does not end with a (p + l)-block.
We define A* = AQP+11P+1. By using the lemma on A* it is easily
seen that the lemma is true for A. For example, we prove d{B) ̂  at

in the following way:
If A does not end with a 1-block, then K2(A*) obviously ends

with 0p+1lp+1. Next we suppose A ends with s 1-blocks. Then A*
has the form

A* = 001010 1010p+1lp+i = δθβ(lθ)θplp+1 .

In the construction of UL2(A*) S(10) is removed. Moreover, the 0
marked by a * is maybe removed. In any way iΓ2(A*) will end with
0p+ίlp+ί. In the same way we prove that iΓί+1(A*) always ends with
0p+1lp+1. Moreover, the number of positions in O ^ l ^ which we
enumerate is at least 2 (p + 1 — i) when we construct K^A*). Hence,
if type(-B) — ί, then

d(B) ^ at - 2(p + 1 - i) = a,

where at is "at relatively A*".

Proof of (c). Suppose A ends with a (p + l)-block and starts
with 0 or a (p + l)-block. We observe: If d{B) = 0 for some B
with type(jB) < p + 1, then A must start with some block of type <
p + 1. Hence, d(B) > 0 for type(£) < p + 1. t^+1 + t ^ - a9+1 is
proved in the proof of (a) and (b). Hence, the first claim follows
by using (a). The second claim in (c) follows analogously.

To illustrate the proof we study the example in §3 with p = 3:

A = 001111001001111000011010011101111

contains 3 1-blocks (6, 14, 17), 1 2-block (9), 1 3-block (3) and 2 4-blocks
(2, 3) where the distances of the blocks are in the round brackets.

We now construct A = KX{A) ~> K2{A) -> K9(A) -> K4(A). We
underline the i-components in Kt(A). We also number some of the
positions in K^A) as in the second part of the proof: We put a *
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above the positions which we do not number. The remaining positions
in Ki+ι(A) are numbered from 1, , at. We put the correct numbers
above those positions corresponding to the i-blocks in A. If the
components are put into Ki+1(A) as in the proof, we observe that
we get Kt(A).

K^A) = 001111001001111000011010011101111
* * 6 * * *14* * 17

K
2
(A) = 001111000111100001100111111

* # * * # * * * 9 * *

K,(A) = 00111100011110000111111

- 00111110000111111

LEMMA 4.2. Suppose A e {0, l}n, w(A) = k + p + 1 and A = DE.
We suppose that D has the form

D = O^BJO, - - - 0irBrCr0ir+1

where (for 1 ^ i ^ τ)Bt is a block of type ^ p and 0 > fCi(t) ^ f(Ci) —
-f(Bz) for teC,.

Let qe {1, , p + 1}. We suppose E starts with a 0 or a block
of type > q. Then for all block B such that type (B) — q, we get:

d(B) ^ dq(D) f or B < D and d(B) > dq(D) foτB<E.

(In this lemma we admit D = 0 or E = 0.)

Proof, We only sketch the proof since no new ideas are involved.
We decompose D and E as in the previous proof:

D = KX(D) > >KP

E = K1(E) > >KP

Since E starts with 0 or a block of type > q, it follows from the
construction process that dE(B) > 0 for B < E(dE(B) is the distance
of B relatively E). By induction it is easily proved that the number
of positions in Kq+1(D), which we enumerate, is dq(D). From these
two claims the lemma follows.

The Lemmas 4.6-4.14 describe how the block structure change
by applying θ. All these lemmas are proved in §5 and they are all
a consequence of Lemma 5.1. Lemma 5.1 is the key lemma in this
paper.

First we prove a lemma which shows how θEk+...Ek+p works. We
need a definition:

If a = 1, then α' = 0. If a = 0, then a' = 1.
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If C = a, . - aSf then C = a\ -. αj.

LEMMA 4.3. Let A = αx αu cmd ft ^ w(A) ^ ft + p + 1.

(a) If k^ w(A) - /x(ί) ^ ft + p + 1 for t ^ s, then ΘS(A) =
as+1 ana[ as.

(b) If w(A) = k + p + I and a, - αs = Os, ίfce^ <9S(A) = α s + 1

anat - α s.
(c) // w(A) = fe α^d «! α, = 18, then ΘS(A) = α s + 1 αuαx α s.

Proof, (b) and (c) are easily shown.

(a) We prove by induction with respect to t that

w(θ\A)) - w(A) - f(t) and Θ\A) = α ί + 1 - - ana[ - a't .

We divide the basis step into 3 cases.

Case 1. w{A) = fc + j> + 1.
k + p + 1 - Λ(l) = w(A) - f(l) ^ & + p + 1 implies /,(!) > 0.

Hence, a1 = 1 and w(α2, , an) = k + p. We get

α»+i = <*! + ( # * + • • • + Ek+P)(a2, , αΛ) = 1 + 1 = 0 = αj .

Case 2. w(A) = &.

implies /^l) < 0. Hence, a, = 0
and w(α2, , α j = ft. We get

αΛ + 1 = αx + ( ^ + + Ek+P)(a2, , αw) = 0 + 1 = 1 = a[ .

Case 3. k < w(A) < ft + p + 1.

We get immediately w(a2, , αΛ) e {ft, , ft + p}.

In all the cases w(5(A)) = w(A) — / ^ l ) . The induction step is
proved analogously.

When we prove Theorem 3.2(a) we reduce the problem by the
following lemma:

LEMMA 4.4. We suppose w(A) — k + p + 1 αwώ A contains a
(p + lyblock. Then there exists an i such that Θ\A) satisfies:

( 0 ) The number of j-blocks in A and Θ\A) is equal for j =

1, '-,P + 1.
( 1 ) Θ\A) ends with a (p + l)-block.

( 2 ) w(0*CA)) = ft + P + 1.

( 3 ) Θ\A) starts with 0 or a (p + l)-block.
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( 4 ) Σ{m(B): type(JB) = p + l and B block in A} = Σ{m(B): type(B) =
p + 1 and B block in

In the rest of §4, except Lemma 4.12, we therefore suppose that

(A ends with a (p + l)-block.

] ( i ) & 1(4.3) ]
[A starts with 0 or a (p + l)-block.

We denote the last (p + l)-block in A with BM2>
Now we will study how the blocks move and change by applying

θn. We need more notation. We divide each (p + l)-block B into
two parts H(B) and K{B) as follows

(4.4) B = H(B)K(B) where fB(t) £ p + 1 for t e H(B) and fB(l(K(B))) =
p + 2 or UΓ(JB) = 0 .

If type (B)< p + 1, we put H(B) = 5 and #(£) = 0 . Furthermore
we associate to certain blocks B a tail as in the next definition.

DEFINITION 4.5. (a) We decompose A (by induction) such that

A = O ^ Γ A , BmTmOim+1BEND

where Bt is a block on level 1 and Tt is maximal with respect to
(1) and (2):

(1) 0 > fφ) ^ -typeOB,) for t e Tt.
(2) f(T<)= - type(^).

We call Tt the tail of B,.
(b) Suppose B is a (p + l)-block. We decompose ίΓ(JS) (by

induction) such that

K(B) = l ^ T . l , , l i r oβmΓMl ί M + 1

where Bt is a block on level 2 and r4 is maximal with respect to (1)
and (2):

(1) 0 < fTi(t) £ typeφ) .
(2) /(Γ() = typβCB,).

We call Γ, the tail of Bt.

Suppose B is a block in ^i. If l(B) 6 Γ where T is a tail, it is
easy to see that B is contained in T. Furthermore, if l(B)eH(Bll:)
where B* is a block, 1? is contained in H(B*). If ΰ is a block we
define as before
(4.5) m(B) = |/(.B)| = |(the number of l's in B) - (the number of

O's in B)\ .
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The next lemma gives us a bijective correspondence between the
blocks in A and

(4.6) A = θn(A)lp+1 e {0,1}*+P+1 .

LEMMA 4.6. There is a bijective correspondence B —> B: {the
blocks in A) —> {the blocks in A) such that m(B) = m(B),

type(-B) = type(B) and:
If B has a tail T, then l(B) = l(B) + {the number of positions

in H(B)). r(B) = r(B) + (the number of positions in T). Further-
more,

KB END) — KB END) + (the number of positions in H(BENDj) .

r(BEND) = n + p + 1 .

Otherwise, l(B) = l(B) and r(B) = r(B).

LEMMA 4.7. There exists an integer s > 0 such that Θn+S(A)
satisfies (4.3).

Let sA be the least integer with this property. Then p + 1 ^
sA <S n. Besides every block in A is either contained in aλ dSA or
a8Λ+1...dn+p+1 where A = aί aw + p + 1.

We define

(4.7) ^(A) - ^W+S^(A) .

(4.8) If B corresponds to a block B in αx αs^, we say that i? and
B circles around by φ.

The next lemma describe the block structure of φ(A). In the
proof of Theorem 3.2 we study φ(A), φ\A), . We will find a q
such that the block structure of A is equal to the block structure of
φq(A). This will imply that A = φq(A).

LEMMA 4.8. There is a bijective correspondence B—>φ(B):{The
blocks in A} —> {the blocks in φ(A)} such that type(9>(2?)) = type(B),
m(φ(B)) = m(B) and:

If B circles around by <p, l(φ(B)) = l(B) — sA + n and r(φ(B)) =
r(B) — sA + n. If B does not circle around and B Φ BEND, then
l(φ(B)) = l(B) - sA and r(φ(B)) = r(B) - sA. l(φ(BEND)) = l(BEND) ~ sA

and r(φ(BEND)) = n.

The next lemmas describe how d(B) change by applying the shift
register. To formulate these lemmas we need the following definition.
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Condition 4.9. Suppose B-+ B* is a bijective correspondence
between the blocks in A and A*. Suppose Bq

u , Bq

7q are the g-blocks
in A numbered from left to right.

By definition B —> U* satisfies Condition 4.9 if there exist integers

rq, %g(Q = 1, , P + 1) such that
( 1 ) The order of the g-blocks in A* from left to right is

(2 ) For i - 1, - , rq we have d{Bf) - d(B5) + aq - xq.

For i = rq + 1, , 7g we have d{Bf) =

( 3 ) m(B*+1) = m((BrΎ) for i = 1, , 7P+1.

LEMMA 4.10. If B is a block in A, then d(B) = d(2?) + type(jB)
( 5 is as in Lemma 4.6).

Now we consider B-*φ(B) which is defined in Lemmas 4.6 and
4.8. A = αx dn+p+1 and sA are defined in (4.6) and Lemma 4.7.
We define

(4.9) xq(A) = P + 1 - Q + ^{2(typeCB*) - ?): lϊ* < αx • αS 4 and
t y p e ( 5 J > q}. (xq(A) - ^ ( α , -. aj - q) .

This last equality is proved in Lemma 5.5.

LEMMA 4.11. (a) B~^φ(B) satisfies Condition 4.9 with rq = the
number of q-blocks in aγ dSΛ and xq = α?g(A) as in (4.9). Specially,
we have rp+ί = a?p+1 = 0.

(b) 1/ type (2?) = q < p + 1, we have B < ax dSA <=> d(B) ^ xq.
(c) Suppose type (B) = g < p + 1.

// dCB) ^ x?(A), ίfeen d(9<B)) = d{B) + aq - xq{A).
If d{B) > xq{A), then d(φ(B)) = d{B) - a?ff(A).

(d) xq{A) = p + 1 - # + Σf=ff+i 2 (i -?)•*•« and 0 < ajff(A) ^ a g

(? = 1, ••-,?).
(e) <p(A) = ί*(A) ^feere ί = n + p + l + Σ f ^ S i n ^ 2n anc? ί

is the minimal integer such that Θ\B) satisfies (4.3).

LEMMA 4.12. We suppose that w{A) = w(β\A)) = fc + p + 1.
exists a bijective correspondence B —»0*(I?) between the blocks

in respectively A and θi{A)i satisfying Condition 4.9.

(4.10) We define φmm(A) = ̂ (A)where ΐ > 0 is the least integer i > 0
such than 0*(A) satisfies (4.3).

If A contains only 1 (p + l)-block, <^min(A) = 9>(A). The next
lemma takes care of the other case.
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LEMMA 4.13. Suppose A = ax an contains more than l(p + 1)-
block and B is the first (p + l)-block in A.

(a) <pmin(A) = Θ\A) where δ < n.
(b) A block in A is contained in αx aδ or aδ+1 an.
(c) aι aδ = BT where B is the first (p + ΐ)-block in A

and T is the tail of B.
(d) There is a bijective correspondence B —> <pmm(B) between the

blocks in respectively A and φmln(A)9 satisfying Condition 4.9 with
rq = the number of q-blocks in ax aδ and xq — dg(a1 aδ).

(e) If type(i?*) = q < p + 1, then B* < at - aδ

(f) α?ff = d(J?) + w(B)-(p + l) + Σfίί+i2 ( i - g ) r<

(9 = 1, ••-,»).
(g) ^min(^) = Θ\A) where t - d{B) + m(5) - (p + 1) + Σfi 1 2 i r<β

Now we will prove Theorem 3.2. We define

(4.11) Ll(A) = ̂ (A) + + a ? ^ - 1 ^ ) ) .

We need the following lemma.

LEMMA 4.14. Suppose B is a block in A such that type(jB) =
j < p + 1. Let s be a positive integer. Suppose t ^ 0 is the least
integer such that d{B) + taά — L)(A) ̂  1. Then

d{φ\B)) = d{B) + ta3 - L]{A) .

Moreover, B circles around t times by φs (i.e., there exist t different
integers s1 such that 0 ̂  s1 < s and <P8\B) circles around by φ).

Proof. We prove this by induction with respect to s.
Suppose the lemma is true for (s — 1) and that t* is the least

integer such that

(4.12) d{B) + t'cij - L)-\A) ^ 1 .

Then,

(4.13) d(φs-\B)) = d(B) + t'ctj - Lsf\A) .

Moreover, we suppose d{φs~\Bj) ^ x^s~\A)) (if d(φs~\B)) > xά{φs~\Aj)
the proof is analogous). By Lemma 4.11(c)

(4.14) d(φ(φ°~XB))) =

(4.13) and (4.14) imply

d(φ\B)) = d(B) + (t' + l)aά - L){A) .

By (4.13) we get
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d{B) + t'as - L)(A) = d(φs'\A)) - x^'^A)) £ 0 .

By (4.12) and Lemma 4.1 we get

d(B) + (V + ΐ)as - L){A) ^ 1 + aό - x3{φs

since r/ ) <; aά by Lemma 4.11(d). Hence, (t' + 1) is the least in-
teger such that d{B) + ta^ — L)(A) ^ 1. Hence, the lemma is true
for s.

Moreover, we need two observations:

(4.15) xp+1(A) = 0. Hence d(B) = d(φ(B)) and m(B) = m{φ(B)) when
type(J5) = p + 1 .

(4.16) Suppose 1 ^ i ^ p. If LJ(A) = taj9 then for each j-block B
we have d(φs(B)) = d{B) and JB circles around t times by 9?.
(This is an easy consequence of Lemma 4.14.)

The proof of Theorem 3.2. (b) is trivial. By Lemma 4.4 we
suppose that A satisfies (4.3). By (4.15) d{φγ{B)) = d{B) and m(φγ(B)) =
m(B) when type(JB) = p + 1. φγ(A) = A follows from Lemma 4.1(b)
and the following claim: d{B) — d(φγ(B)) for every i-block, and every
i-block circles aroud X, times by φγ{j = 1, •••,?)). This claim follows
from (4.16) if we can prove that LJ(A) — Xάa5 for 3 = 1, , p. We
prove the last statement by induction with respect to j starting with

3 = P
By Lemma 4.11(d) xp(φ\A)) = 1, hence Lζ(A) = Y = α -̂Zp. Suppose

L?(il) = -X/α/ for / = p, p - 1, - , i + 1 . We get ^(^(A)) = p + 1 -
i - i;{2(type(J5) - i): ^(J5) circles around, type(B) > j}.

When q > j each g-block 5 circles around Xq times by φF (this
follows from the induction hypothesis and (4.16)). Hence,

LY(A) = Xj(A) + xό{φYΛA)) = Y(p + 1 - j) + Σ -2Γ. Tf 2(? - i)
9=5+1

Finally we compute φγ. By Lemma 4.11(e) ψγ is equal to θ applied

Σ in + p + 1 + {̂2 type(£): 9>«(B) circles around by ?>})
9=0

= Γ(n + p + 1) + 2 71 X1 + 4τ2 X 2 + ••• +2p 7p X3, times .

Finally we mention how the lemmas will be used in the forth-
coming paper. If w(A) = sup* w{θ\A)), Lemma 4.12 will imply that
all Θ\A) such that w(θ\A)) = w{A) have the "same type" of block
structure as A. When we determine the minimal periods, we will use
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9>min. instead of φ. Lemmas 4.11, 4.13 and 4.14 will be used in the
study of φmln. The minimal period of A will be determined by its
block structure. When we determine the possible minimal periods
we will use Lemma 4.1 which characterize the possible block struc-
tures. We will also need this lemma when we determine the number
of cycles corresponding to each minimal period.

5. The proofs* In this section we prove the Lemmas 4.4, 4.6,
4.7, 4.8, 4.10, 4.11, 4.12, and 4.13. The key lemma is Lemma 5.1. We
need more notation. We define

(5.1) If K(B) = hfi.T, lίmBmTmlim+1 is as in Definition 4.5, then

K{B) = lhB[T[ • • limB'mT'mlim+1.

Moreover, we say that A satisfies Condition (5.2) if

(5.2) w(A) = k + p + 1, and A starts with a 0 or has the form A —
B ' - B* where type(B) ^ type(2?*).

(5.3) δ(A) is the least index such that ΘHΛ\A) satisfies (5.2) (if it
exists).

LEMMA 5.1. Suppose A = H(B)K(B)D satisfies (5.2). Let h =
the number of positions in H(B)K(B).

(a) (1) Θ\A) = DH(B)'KVB).

(2 ) w{θ\A)) = k + p + 1 - type(JB).

( 3) w{θ\A)) ^ k + p + 1 - type(J3) for 1 ^ t ^ h.

We define Ah = θ\A)ltγve{B) - DH{B)'K{B)ltM e {0, l}-"** <*>.
(b) There exists a bijective correspondence B*—>Bl:{the blocks

in A}-^{the blocks in Ah) satisfying type(B*) — tyι>e(Bl),m(B*) = m(Bl)
and:

(1) If B* < H(B), then B% = B'*.
(2 ) Suppose B* < K(B). If B* has a tail T(B*), then B% =

T(BJ. Otherwise B\ = £ ; .
( 3 ) If B*<D, then B% = B*.

(4) Bh = K(B)ltJVQ{B).

(c) (1) δ - d(θ\A)) exists and type(JB) ^ δ < l ( ^ ) ) ^ ^ ~

compose Ah — OJ)%K(B)\.^^m where r (A) = δ.

( 2 ) Every block in Ah is contained in Dx or D2K(B)ltypeiB).

( 3 ) θh+δ(A) - D2K(B)D[.

( 4 ) w ( 0 Λ + t ( A ) ) ^ ifc + p + 1 - t y p e ( 5 ) f o r l ^ t ^ d . We d e n o t e

A by T(B), i.e., ^ft+δ(A) = D2K{B)T(BY.
(d) There exists a bijective correspondence B% —> Bl+δ: {the blocks

in Ah} -> {the blocks in θh+δ(A)} satisfying type(J3*+δ) = type(S # ),
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m(Bl+δ) = m(£*) and:

( 1 ) If Bl< D2K(B), then

(2 ) If B%< Dί9 then Bl+*

( 3 ) Bh+δ = K(B)D[.

= B%
B%.

B%.

We observe that the definition of T(B) in Lemma 5.1 corre-
sponds to the definition of the tail of B in Definition 4.5: Suppose
A = QhBιT1 BmTmOim+ίBEND is as in Definition 4.5. If we apply
Lemma 5.1 on Θ%A) = BXTX we get Tι = TCA). Analogously we
get Tt = T(Bt) for i = 2, , m.

We will now illustrate the proof by an example. The clumsy
formulation of the lemma is necessary to treat all cases. However,
if we suppose A = BT where T is the tail of J5, the lemma is easier
to understand. In this case h and 8 in Lemma 5.1 are given by
h = the length of B, and 3 = the length of T. We therefore study
the following example with p = 3: A = H(B)K(B)T

K(B) T

11,0,1110 0 , 1 , 0 1 1 1 1 0 0 0,1,011.0.111,0.1,10 0 011.0.10 0 0

u
1

π
2

D u 72X7) u
8

2X5)

- H{B)'K(B)T

Γ
= 0011,00011,010011111,0,100,1,0 011,0,111100.1.0111

u
6

u
7

The blocks in A, except B itself, are nummerated from 1 to 9. The
corresponding blocks in θn{A) are also nummerated from 1 to 9.
Moreover, we have denoted the tail of the blocks No. 5 and 7 by
Γ(5) and T(7) respectively. We observe that the blocks of θn(A) are
obtained from the blocks of A in the following way:

1. B-*K(B)T'.
2. We remove a level from the blocks in H(B).
3. We add a level to the blocks in T.
4. The block No. 5-> Γ(5)', and the block No. 7-> Γ(7)\
5. We remove a level from the blocks contained in the blocks

No. 5 or 7.
6. We add a level to the blocks contained in T(5) or T(7).

Proof of Lemma 5.1.

Proo/ o/ (a). We put 2 = r(H(B)). We get from Lemma 4.3(a)
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that ΘZ(A) = K(B)DH(BY.
If K(B) Φ 0 , then w{θz(A)) = k and by using Lemma 4.3(a) and

4.3(c) several times we get Θ\A) = DH(B)'K(B) and w(θ\A)) = k. (2)
and (3) are easily shown.

Proof of (b-3). We only need to prove this for blocks on level
1. Let B* < D be a block on level 1 in A. We must prove that
B* is succeded by a D* in Ah satisfying:

0 > / Λ ( ί ) for ί e ΰ ,

(Z>) + t p ( £ ) or

If D = DίB^D^D2 where Z?* satisfies (5.4), there is nothing to
prove. Otherwise D = Dβ^C* where C* satisfies: 0 > / Λ (ί) for
ί e C , . Suppose first C,, ̂  0 . If type(J5) = p + 1, we get

f(C*H(B)')<-(p + l) and /*(«)< 0 for teC*H(B)' .

If type(S) < p + 1, then ^ f e = A ^ C , ί ί ( 5 ) Ί t y p e ( 5 ) and

/*(«)< 0 for teC*H{B)ΊtΎVQ{B) .

If C^ = 0 , we have by (5.2) that type(B*) ^ type(-B). Hence, B* is
suceeded by iί(B)' and f(H(B)') ^ typeίJS,,). In all these cases we
get easily a D* satisfying (5.4).

The proof of (b — 1) is the main part of the proof.

Proof of (b—1). Because of (b—3) the first 1 in H(B)' will
start a block on level 1. Suppose H(B) = l ^ l ^ i ^ Bmlim+1 where
B19 -9 Bm are the blocks on level 2 in H{B). We get

Since fmB)(t) g f(H(B)) for 16 £Γ(JB), there exists Cx such that JΪ(J5) -
• B& --- and

1 51) for teC,.

We get

0 < fB[(t) ^ f{B[) = type(Bx) for ί e B[

0 > fo[{t) ^ /(CO = -type(^) for 16 C[ .

By definition B[ is a block in Ah satisfying type(B0 = type(5J and
leveled) = 1 = level^) - 1. We treat B2, •••,Bm analogously.
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By the same argument we prove (by induction with respect to
level (£„)) that (b—1) is true for all B* < H(B).

Proof of (b - 4). i£(jB)ltype(5) starts with a 1. Hence by (b—1)
there starts a block on level 1 in position l(K(B)ltyve(B)). If K(B) =
0, there is nothing to prove. Otherwise, we prove easily that

f£ίB)(t)>0 for teK~B)lp+1 and f(K(B)lp+ι)>p + l .

Moreover, there is no C contained in K(B)1P+1 satisfying fc(t) < 0
for teC and (/(C) = - ( p + 1) or r(G) = n + p + 1). Hence, Bh -

K(B)1P+1 is a (p + l)-block. Furthermore,

f{Bh) = /(*(*)) + p + 1 = /(JBΓ(B)) + /(#(£)) = f(B).

Proo/o/(b—2). K(B) = hβ.T^ - - BmTmlim+1 where £, (i =
1, , m) are the blocks in JSL(S) which has a tail 2V We get

We treat only BXTX. B2T2, , 5mΓm are treated analogously. As in
(b—1) we get: For all B* < Blf B* is a block in Ah such that type
(Si) = type(BJ and level(5'*) = l e v e l ^ ) - 1.

Next we show that J5ί = T[. T[ satisfies

(5.5) 0 > fφ) ^ f{T[) = -type(B t) for ί e T[ .

Obviously Bh - K(B)1P+1 has the form JBΛ = T[CX where Cx

satisfies

0 < fCί(t) ^ /(CJ = type(Bx) .

Hence JSί = T[ is a block of type(J5x) such that level(-Bf) = leveled).
At last we prove as in (b — 1) that: For all B* < Tlf B* is a

block in Ah such that type(B'#) = typeCJS*) and level(JB'*) = level(jBJ + 1.

Proof of (c). We have Θ\A) = DH(B)'K{B). We prove that

Θ\A) has the form Θ\A) - D^KXB) where

(5.6) 0 > fDι{t) ^ /(A) = -type(B) for t e A .

Since B is a block in A = H(B)K(B)D we have two possibilities. If
/*(«) < 0 for t e A we get /*(«) < 0 for t e Z)fir(β)r and f{DH{B)f) <
— type(B). Otherwise, D = A A where A satisfies (5.6).

We choose A maximal with respect to (5.6). We put δ = r(A)
By (5.6) every block starting in A is contained in A Hence, (2)
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is true. (3) and (4) follow from Lemma 4.3. However, we are not
able to prove (1) without using (d). Hence, we proved (d) first.

Proof of (d). If B% < D2 is a block on level 1 in Ah, we show
that Θh+\A) has the form Θh+\A) = BID* where D* satisfies* where D*

for t 6 ΰ # .fnXt)<
r(DJ = n or /(£>,) ^ -type(£*) .

If D2 — i^D* where Z)* satisfies (5.7), there is nothing to
prove. Otherwise Ah = B%C* where fc£t) < 0 for ίeC*. In this
case type(JS) < (p + 1) and K(B)=0. We obviously have C* =
Cαtypβdi, where /(CJ < -type(£). D* = CXT{B)' will satisfy fD£t) < 0
for teD* and ^Z?^) = n. Hence, (d—1) is true for JB* < D2.

Next we prove (d—3). If K(B) = 0, B^ 5 = Γ(B)f satisfies the

lemma. Otherwise, K(B) Φ 0 and type(J5) = p + 1. We get

f(K(B)T(B)') >p + l and / ^ ( ί ) > 0 for t e K~B)T(B)' .

Suppose there exists a C < Ah+δ such that

/(C) ^ Λ(ί) < 0 for t e C

r(C) = n or /(C) = -(p + 1) .

We see easily that C < K{B). This is a contradiction since Bh =
K(B)1P+1 is a (p + l)-block. We therefore get that £ Λ + δ - KZB)T(B)'

is a (p + l)-block. Hence, we have proved (d—3).

We prove trivially that (d—1) is true for B% < K(B). Finally
we show (d—2) in the same way as (b—1).

The proof of (c-1). We suppose D2 Φ 0 (if D2 = 0 , then the
proof is analogous and much easier). By the maximality of D1 with
respect to (5.6) we get that D2 starts with 0 or a block of type ^
type(£). By (d—1) θh+δ(A) = A - - starts with 0 or a block of
type ^ type(-B). Moreover, if D1 satisfies (5.6) and is not maximal
with respect to (5.6), then D2 starts with a block of type < type(J5).
By (d—1) θh+δ(A) will start with a block of type < type(£). Hence,
δ is the least index satisfying (5.2).

LEMMA 5.2. Suppose w(A) = k + p + 1 and A = B&DB where
< type(J5) and

0 > fCι(t) ^ / ( C x ) = - / ( B O for teC,.
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Let h = riCJ. Then we have Θ\A) = DBB[C[ and w{θ\A)) = k + p + l.
Furthermore,

w(θ\A)) ^ k + p + 1 - type(A) for t e {1, . - , h) .

There exists a bijective correspondence B*-^ Bl: {the blocks in A} —>
{the blocks in Ah} such that type(-BJc) = typeί B*), m(B%) = m(B*) and

(1) If B*<D, then B% = B+.
( 2 ) If B*< Bβu then B% = B'*.
(3) Bh = BBlCί
(4) If B*<B, then B\ = B*.

Proof We observe that f{BB[C[) = f{B) and fB(t) > 0 for t e
BB[C[. Hence (3) is proved. (1) and (4) are trivial. (2) is proved
in the same way as Lemma 5.1(b-l).

Proof of Lemma 4.4. The lemma follows easily by using Lemmas
5.1 and 5.2 several times.

Proof of Lemma 4.6, 4.7 and 4.8. Suppose A = O ^
BmTmQim+1BEND where B, = H(Bt)K(Bt) and T, is the tail of Bt. We
prove Lemma 4.6 by using Lemma 5.1(b) and (d) respectively m + 1
and m times. We also use Lemma 4.3(b) m + 1 times. Then Lemma
4.7 follows from 5.1(c) (sA = δ(θ*(A))), and Lemma 4.8 follows from

LEMMA 5.3. Suppose C < A, f(C) — 0, C starts with a block and

0 < \fc(t)I ^ p + 1 for teC and t Φ r{C) .

Then the length of C — A(C) where Δ(C) — Σ?ί ί 2 ί {the number of
i-blocks B < C).

Proof. The proof is by induction with respect to j = the number
of blocks contained in C. If j = 1, then C = lg0g or 0glg and the
claim is true. Suppose the claim is true for 1, , j . Suppose that
C contains j + 1 blocks. C = BE where B is a block. Suppose
level(U) is odd. (If level(JB) is even the proof is analogous.) Then

B = hf^ Cqliq+ί and # = 0,^0* A0 i r + 1

where Dό and Ct satisfy the hypothesis of the lemma and

iγ + - + iq+1 = j , + + j r + ι = typeΰ .

By the induction hypothesis, the lemma is true for Gt and Djf and
we get the length of BE = Δ{BE).
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LEMMA 5.4. Suppose A = H(B)K(B)D = αx αw, type(-B) = g,
AΛ = a\a\ > -, B*-> B% and B\ —> B%+δ are as in Lemma 5.1.

(a) B* -» B% satisfies Condition 4.9 wiZft r5 = the number of
j-blocks in aγ ah and x3- = dj(a1 ah).

(b) Bl —> i?*+<5 satisfies Condition 4.9 wiί& ?%• = £Aβ number of
j-blocks in a\ - - - ah

δ and x3- = <Zj (αf α£).
(c) Suppose type(JB*) = i < type(B) = g. Γ/^e^ ^ < α? a\ if

and only if d(B\)<±d5{μ\ ah

δ).

Proof. We suppose that K(B) is as in (5.1). Hence,

A = H{B)K{B)D = HWUfrK limBmTmlim+1D .

Ah = DH(B)'K(B)lq = DH(B)ΊhBlT[ - lίmB'mT'mlim+llq .

(If q < p + 1, then iΓ(ΰ) - 0.) By Lemma 5.1 (b) we get Bh =

K(B)lq and B\ = Γ for i = 1, , m. The other blocks get displaced
h positions modulo n.

We observe that

(5.8) dό(D) = dj(A) - dό{H(B)K(B)) and α, = d, (A) + j .

First we consider Bh. H(B) has the form H(B) •=- h&h, C m l W l

where Ĉ  satisfies Lemma 5.3, and ix + + ίm+i = g. By Lemma
5.3 dq(H(B)f) = q. Hence,

d(Bh) - d β ( i » + dq(H(BY) = dq(D) + q = aq- dq{H{B)K{B))

= d{B) + aq — dgCtt! ah)

by (5.8) and since d(B) = 0 and a, % = H(B)K(B).
Next we suppose J5>;ί < iί(jB), type (JS )̂ = s and A = EB*

Then Aλ = Z)£"5J;

There is a bijective correspondence between {the end positions
of blocks in E}\{l(B)} and {the end positions of blocks in E'}. Hence,
ds(Ef) = ds(E) + s - d(B*) + s. Hence, by (5.8)

*) - ds(D) + rfs(S;) - ds(D) + 8 + d(B#) - d(BJ + α s - ds(H(B)K(B))

= d(B*) + α s - (ϋ.Cα! α j .

All the other cases are treated in the same way.
(b) is proved as (a), and (c) follows from Lemma 4.2.

Proof of Lemma 4.10. We treat only the case type(JB) = q and
B has a tail. Then by Lemma 4.6

A - EH(B)K(B) , A = E H ( B ) ' B •--

and there exists a bijective correspondence between
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{the end positions of blocks in E)

and

{the end positions of blocks in E} .

Therefore dq{E) = dq(E). As in the previous proof dq{H{B)') = q.
We get d{B) = dq(E) + dq{H{B)f) = dg(E) + q = d{B) + q. All the
other cases are treated in the same way.

LEMMA 5.5. Suppose A satisfies (4.3). Suppose rs> = the number
of j-blocks in aι aSA, where A — a1 dn+p+ι and sA are defined in
(4.6) and Lemma 4.7.

(a) sA = p + 1 + Σ?=i 2 i r<β

(b) ^(αx α s j = p + 1 + Σί=y+i2 (i - j)-rt = Xj(A) + j where
Xj{A) is defined in (4.9).

Proof. sA = 5(0*04.)) = δ(αx αΛ). By (5.6) in the proof of Lemma
5.1 we get

0 > f(d, . at) ^ - / ( α , α s j = ~(p + 1) for 1 ^ ί ^ sA .

Hence, d1 ds^ is equal to

where Ct satisfies Lemma 5.3 and iγ + + ΐm+i = p + 1.
(b) By definition

3 P

djid, ••• α ) = s^ - Σ 2 i r< - i Σ 2 r< ,

and (b) follows from (a).

Proof of Lemma 4.11. From Lemma 5.4(b) we get that B -> <p(B)
satisfies Condition 4.9 with δ = sA and

r3- = the number of ^-blocks in αx dδ .

% = ^i(#i •••««) = ^i(^ ) + 3 (Lemma 5.5) .

Moreover, if type(J5) = j we get by Lemma 5.4(c)

B < ax α, <=> d(JB) ^ d/α! aδ) .

Since d(B) = d(S) + type(5), Lemma 4.11(a) and (b) are true. By
combining (a) and (b) we get (c) easily.

The first parts of (d) and (e) follows from Lemma 5.5. Moreover
xq(A) ^aq (q = 1, , p) is proved as follows: Let 5 E N D be the last
block in A. If B Φ BENT) is a block in αx an, then B < αx α».
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But r(J?END) = n + p + 1 and 1(JBEND) = w + 1 if K{B) = 0 . Hence,

^(fii dn) ^ d ^ αn) + 2q

and by Lemma 5.5(b) and (5.8) we get

xp(A) = d^δi d,A) - q ^ ri^αx αΛ) - (q ^ d^K an) + tf = aq .

That ί is the least integer such that Θ\A) satisfies (4.3) follows from
the proof of Lemma 5.1.

Proof of Lemma 4.12. Let i be the least i such that w(θ\A)) =
k + p + 1. We divide the proof into 3 cases.

( 1 ) If A starts with 0, then i = 1.
( 2 ) Suppose A satisfies Lemma 5.1. Then B—>Bh will satisfy

Condition 4.9 by Lemma 5.4(a). We do a little modification of Lemma
5.1 (c) and (d): We use δ' instead of <?, where δ' is the least integer
8f > 0 such that w(θh+δ'(A)) = k + p + 1. (In the proof of Lemma
5.1 we choose D1 minimal with respect to (5.6) and put δr = r(Dj).)

As in Lemma 5.4(b) Bh -> Bh+y will satisfy Condition 4.9. Hence,
B-*θh+δ\B) will satisfy Condition 4.9.

( 3) Suppose A is as in Lemma 5.2. Then i = h. As before it
is easy to see that B —> Θ\B) = Bh satisfies Condition 4.9.

Proof of Lemma 4.13. (a), (b) and (c) follows from Lemma 5.1.
The proof of (d) and (e) are modifications of the proof of the Lemma
5.4.

(f) We prove that

(5.9) the length of a, aδ = m(B) - (p + 1) + d(B) + Σ 2 - i r, .
ί=l

Suppose αx aδ = DJ3T. D has the form

i) = \CA2 - - Cw0 ί m + 1

where C< satisfies Lemma 5.3 and i1 + + im+1 = d(JB). Hence,

the length of I> = d(JS) + Σ {2 type(JB*): J5* < D} .

We prove analogously,

the length of B = m(B) + Σ {2 type(β*): 5* < B) .

the length of Γ - (p + 1) + Σ {2 type(ΰ*): β* < T) .

(5.9) follows from these equalities since type(B) = p + 1 and r p + 1 = 1.
(f) follows from (5.9) by using the definition of xq — dq{aλ aδ).
Moreover, (5.9) implies (g). (xq ^ aq is proved as follows: It is not
difficult to prove dq(aδ+1- α n ) ^ p + l —2g. (For example if αa + 1 αw =
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lp+1 where l p + 1 is a (p + l)-block, then dq{aδ+1- α j = p + l —2g). Hence,

xq = d^a, αε) = dff(α! α j - dg(αδ+1 an)

^(aq-q)-(p + l-2q) = aq-(p + l-q)< aq) .

Now we prove two lemmas which we will use in the next paper.

LEMMA 5.6. (a) We suppose Ae {0, l}n and w(A) — k + p + 1.
We determine the block structure of A with respect to p. If j =
sup{type(I?): B block in A), then w(θ's(A)) ^k + p + 1 — j and Θ*S(A) =
Θ'S,(A) for every i, where S = Ek + + Ek+P, S' = Ek, + + Ev+P>,
pf = j — 1 and k' = k + p + l — j .

(b) We suppose Ae{0, l}n, S = Ek + - + i^+p α^d w(A) =
sap w(θ*s(A)) = k + p'+ 1. Then Θ^A) = Θ'S,(A) for every i, where
S' — Ek + + Ek+P>.

(c) ΐfβ suppose A = a1 -" ane{09 ί}n and w(A) = k + p + 1.
Moreover, we suppose 1 <. z ?^ P + 1 and A = B is a z-block or

fA
T

,0

he
•

= BiTJ
i = ar ••

> f(ar

n for pf

+ Ek+P>

32T2 Bf^T/^1

• αs satisfies

• α, ) ^ - « = /(

> p we have 6l

s

and S = Ek + •

?/ where type(5

ϊ\ ) /or i = r,

(A) = 0£(A) /or

ί) — 2 (Xt

••> s(i =

every i,

id

1, •••,

where

f

S'

- i )

Proof, (b) Suppose p' < p. Suppose Θ*S(A) = c1 cn. If
w(β2 cn) = fc + p' + 1, then cx = 0. Hence ^+ 1(A) = c2 c%c( and
w(0^+1(A)) = & + p' + 2 which is a contradiction. Hence, we have
proved w(c2 cn) <*k + p'. Hence, S(c2 cΛ) = S'(c2 c j .

(a) w(^(ii)) ^/b + p + 1 — i follows from Lemma 5.1(a-3) and
(c-4). Then Θ*S(A) = 6> (̂A) follows as in the proof of (b).

(c) We suppose A = B = H{B)K(B) as in Lemma 5.1. (The other
case is treated analoguously.) We let h and δ be as in Lemma 5.1.
We observe h = n and δ = the length of H(B): By Lemma 5.1

Θ%(A) = H(B)'K(B). Moreover, θγ\A) = K{B)H{B) is a (p + l)-block.
Moreover, it is not difficult to prove (for example by Lemma 4.3) that

< k + p + 1 or Θ'S(A) starts with 1

for i = 1, , Λ + 3. Hence, ^(A) = ^5/(A) for i = 1, , fe + δ.
is proved analogously for i > h + 5.

LEMMA 5.7. Suppose A e {0,1}% cmd w(A) = & + p + 1 α^ώ S =
E'fc + + U7/H-P- Suppose A = βjΓZ) where B is a block and T =
α r αs satisfies
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0 > f(ar as) ^ -type(5) - f{T) for j = r, - , s .

w(0s(A)) = k + p + 1 where z = ίfce length of BT.

Proof. The Lemma follows from Lemma 4.3.
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