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COMPACTIFICATION IS OZ

TOSHIJI TERADA

A Tychonoi^ space X is called Oz if every open subset
is ^-embedded in X. In this paper we characterize a class
of spaces whose Stone-Cech compactifications are Oz. Espe-
cially it is shown that for a realcompact Oz-space of count-
able type, βX is Oz if and only if X is expressed as the
union of an extremally disconnected subset and a compact
subset.

!• Introduction* All spaces considered here are TychonofF. A

subset S of a space X is ^-embedded in X in case each zero-set of
S is the restriction to S of a zero-set of X. A space X is called an
Oz-space if every open subset of X is ^-embedded in X. Perfectly
normal spaces and extremally disconnected spaces are Oz. For basic
results of Oz-spaces, see [2] and [6]. Especially R. L. Blair [2]
showed the following result: A space X is an Oz-space if and only
if vX is Oz, where υX is the Hewitt realcompactification of X.
However it is unknown whether the Stone-Cech compactification βX
of an Oz-space X is Oz.

The purpose of this paper is to characterize a class of spaces
whose Stone-Cech compactifications are Oz. As an application of our
characterizations it will be shown that both βR and βQ are not Oz,
where R is the space of all real numbers and Q is the space of all
rational numbers. In § 2, we will show formal characterizations. In
§ 3, structural characterizations will be studied. For example, it
will be shown that for a realcompact Oz-space X of countable type,
βX is Oz if and only if X can be expressed as the union of an ex-
tremally disconnected subset and a compact subset.

2* Formal characterizations• The following lemmas are basic
for our studies.

LEMMA 1 (R. L. Blair [2]). A space X is an Oz-space if and
only if every regular closed subset of X is a zero-set in X.

LEMMA 2. Let X be a dense subspace of a space Y.
(1) If A is a regular closed subset of X, then G\YA is a re-

gular closed subset of Y.
(2 ) If B is a regular closed subset of Y, then B f) X is a re-

gular closed subset of X.

231



232 TOSHIJI TERADA

Lemma 2 is well-known. Let U be an open subset of a space
X. Then βX - G\βx{X - U) is denoted by Uβ in this paper.

LEMMA 3 (E. G. Skljarenko [5]). For any open subset U of a
space X, the equality Έάβx{Uβ) = Cl^r(BdxZ7) holds.

The following lemma is used only once for the proof of
Theorem 1.

LEMMA 4 (D. Rudd [4]). For a zero-set Z of a space X the
following are equivalent.

(1) ClβτZ is a zero-set of βX.
( 2) There exists a real-valued continuous function f on X

with the following properties) (a) Z — f~\0).
(b) // a subset A of X is completely separated from Z, then

inf {/(α): a e A} > 0.

The following theorem can be established by a routine argument
relying on Lemmas 1, 2, and 4.

THEOREM 1. For an Oz-space X the following are equivalent.
(1) βX is Oz.
(2 ) For each regular closed subset A of X there is a sequence

{Uii i < co} of cozero-sets of X with the following properties) (a)
AdUi for each i < ω. (b) For any cozero-set U of X containing A
there is some Ut such that Ui c U.

Another formal characterization is given as follows. This char-
acterization is useful for the studies in § 3.

THEOREM 2. For an Oz-space X the following are equivalent.
(1) βX is Oz.
(2 ) For each regular closed subset A of X there is a sequence

{Ui. i < ω} of regular open subsets of X with the following pro-
perties) (a) AdUi for each i < a), (b) For any regular open subset
U of X containing A there is some Ui such that Ui c U.

Proof. (1)—>(2). Let A be a regular closed subset of X. Then
by Lemma 2 C\βxA is a regular closed subset of βX. Hence G\βxA
has a countable neighborhood basis {Vt: i < a)} consisting of regular
open subsets of βX since βX is a compact Oz-space. For each
i < ω let Ui = ViΠ X. Then it will be shown that {[/,: i < ω} has
the properties (a) and (b). (a) is obviously satisfied. Let U be a
regular open subset of X containing A. Then A and X — U are
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completely separated since A and X — U are regular closed subsets
of an Oz-space X. Hence Glβz AaUβ. Therefore, for some i, G\βχAc:
Vi(zUβ. Thus UiCzU for some i. Hence (b) is satisfied.

(2)->(l). Let B be a regular closed subset of βX. Then A =
B Π X is a regular closed subset of X. Hence there is a sequence
{Ut: i < a)} of regular open subsets of X with the properties (a) and
(b). Then it is obvious that GlβxA = B = n{U%: i <ω}. Hence B is
a zero-set of βX since βX is normal. This completes the proof.

COROLLARY 1. For a normal space X the following are equi-
valent,

(1) βX is Oz.
(2 ) Every regular closed subset of X has a countable neigh-

borhood basis.

COROLLARY 2. βR, βQ and β(R - Q) are not Oz.

3* Structural characterizations• A subset S of a space X is
called relatively pseudocompact if every real-valued continuous func-
tion / on X satisfies the condition that the restriction f\S is bounded.

THEOREM 3. // βX is Oz, then for any regular closed subset A
of X, BdxA is relatively pseudocompact.

Proof. Let A be a regular closed subset of X. Assume that
BάxA is not relatively pseudocompact. Then it will be proved that
condition (2) of Theorem 2 is not satisfied. Let {Ut: i < co} be a
sequence of regular open subsets of X containing A. Since BdxA
is not relatively pseudocompact, Clβx(BdxA) Π (βX — oX) is non-
empty. Let ί/be a point of G\βz(Ji&zA)Γ\(βX — υX). Then it is
obvious that yeClβ^Ui — A) for each i < ω. Since ygυX, there is
a discrete sequence [F^. i < ώ] of regular closed subsets of X such
that FiCzUi - A for each i < ω. Now let U = X - U{ίV. i < ώ).
Then U is a regular open subsets of X containing A. But U con-
tains no member of {E :̂ i < ώ) by the construction.

COROLLARY 3. // βX is Oz, then the following hold.
(1) ind(/SX - vX) ^ 0.
(2) For any regular open subset U of vX, BάuXU is compact.

A space X is called of countable type if, for any compact sub-
set C of X, there is a compact subset C such that C c C and C
has a countable neighborhood basis (see [1]).
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THEOREM 4. If υX is of countable type, then the following are
equivalent.

(1) βX is Oz.
(2) For any regular closed subset A of X, BdxA is a relative-

ly pseudocompact zero-set.

Proof. (1) —»(2). Since X must be Oz, BdxA is a zero-set for
any regular closed subset A of X. Then by Theorem 3 this impli-
cation is obvious.

(2)->(l). Let £ be a regular closed subset of βX. Then Bf]X
is a regular closed subset of X. Hence Bdx(B flX) is a relatively
pseudocompact zero-set of X. Since BάβxB — Clβx(Bdx(BpιX)), BdβxB
is a compact zero-set of υX. By the assumption that vX is of count-
able type, Bd^β is a G,-set of βX. Thus B is Gδ in βX.

Next, we will show that, in Corollary 1, the normality of X
can be replaced by the realcompactness of X.

LEMMA 5. Let X be a realcompact space and let A be a closed
subset of X. If A has a countable neighborhood basis in X, then
C\βxA is a zero-set of βX.

Proof. Let {U^ i < ω) be a countable neighborhood basis of A.
Assume that Cl^A — C7"?o Φ 0 for some i0. Then since ClβxAa

(Uί0 n uty u Bdβx((Ui0 n utγ) = (uion u<γ u cιβx(Bdx(Ui0 n u<))c uιou
ClβziUt - A) for each % < ω, GlβxA - E^cCWΪ/, - A) for each
i < ω. If we take a point y in 0>\βxA — UfQ, then by the same
argument in the proof of Theorem 3 it is shown that {C :̂ i < ω} is
not a neighborhood basis of A in X. This is a contradiction. Thus
GlβxAciUf for each i<ω. Then it is obvious that G\βxA — n
{[//: i < a)}. Thus GlβxA is a zero-set of βX.

COROLLARY 4. Let X be a realcompact space. If every closed
subset of X has a countable neighborhood basis, then X is (perfectly)
normal.

THEOREM 5. For a realcompact space X the following are equi-
valent.

(1) βX is Oz.
(2) Any regular closed subset A of X has a countable neigh-

borhood basis in X.
(3) For any regular closed subset A of X, BdxA is a compact

subset with a countable neighborhood basis in X.
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Proof, (1) —> (3). By Lemma 3, for any regular closed subset A
of X, Cl^A = CWBdzA)U(IntxA)^andCWX-A)-CWBdz(X--A))U
(X - AY = Clβx(BdxA) U (X - A)>. Thus Cl,zii n C1^(X - A) =
Glβx(BάxA). Therefore G\βx(BdxA) is Gδ in /3X since βX is Oz. By
Theorem 3, BdzA is relatively pseudocompact in X. Since X is re-
alcompact, BdxA must be compact. Hence BdxA has a countable
neighborhood basis in X.

(3)->(2). This is obvious.
(2) —> (1). By Lemma 5 it is proved that every regular closed

subset of βX is a zero-set of βX.

A space X is called extremally disconnected if the closure of
every open subset is open. If X is extremally disconnected or
pseudocompact Oz, then βX is Oz (see [2]). Conversely we have
the following.

THEOREM 6. // βX is Oz, then for each discrete sequence
{£/*: i < ΰύ) of open subsets of X there exists i0 such that Uό is ex-
tremally disconnected for each j ^ i0.

Proof. Assume the contrary. Then there is a subsequence
{Uik: k < ω} of {Ui:i<ω} such that Uik is not extremally discon-
nected for each k. For each k let Vk be an open subset of UiJe

such that G\ϋihVh is not open. Let F = \J{G\xVk: k < ω}. Then ob-
viously F is regular closed. But we will show that condition (2) of
Theorem 2 is not satisfied. Let {W^. i < ω} be a sequence of regular
open subsets of X containing F. Then, for each k, there is a
regular closed subset Sk of X such that Ska(Wk Π Uik) — F. Let
U = X — U {Sk: k < ω}. Then U is a regular open subset of X which
contains no member of {W^ i < ft)}.

COROLLARY 5. J/ every open subset of a space X is not extre-
mally disconnected, then the following are equivalent.

(1) βX is Oz.
( 2 ) X is pseudocompact and Oz.

The fact that βR, βQ and β(R - Q) are not Oz follows also from
Corollary 5. The following is the main theorem in this section.

THEOREM 7. Let X be an Oz-space whose Hewitt realcompacti-
fication υX is of countable type. Then the following are equivalent.

(1) βX is Oz.
(2 ) X is expressed as the union of an extremally disconnected

open subset and a relatively pseudocompact (closed) subset.
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Proof. (1) -> (2). Let <%r be the family of all extremally dis-
connected open subsets of X. Then ^ is partially ordered by the
inclusion relation c . Let ^ ' be a linearly ordered subset of "2/. Then
it is not so difficult to see that U{Z7: ί/e^'} is also a member of
<%/. Hence by Zorn's lemma there exists a maximal member E of
^. Let P = X — E. Assume that P is not relatively pseudocompact.
Then there is a discrete sequence {£//. i < ω) of open subsets of X
such that Ui^Pφ 0 for each i. If Ut is extremally disconnected,
then Uili E is also extremally disconnected. But this contradicts
the maximality of E. Hence each Ut is not extremally disconnected.
But this is a contradiction by Theorem 6. Thus P is relatively
pseudocompact.

(2) —> (1). Let X = E U P, where E is an extremally disconnect-
ed open subset and P is a closed relatively pseudocompact subset.
We will show that for each regular closed subset A of X, BdxA is
relatively pseudocompact. Then by Theorem 4 it is true that βX is
Oz. It suffices to show that BAXA c P. This follows from the
following observation:

- lτΛzA

) Π#)U ((IntxA)n P)) - lntzA

)n#)) - IntxA)U(Clx((IntxA)n P)

- lxΛzA)

c P U P

This completes the proof.

COROLLARY 6. Lei X be a realcompact Oz-space of countable
type. Then the following are equivalent.

(1) βX is Oz.
(2) X is expressed as the union of an extremally disconnected

subset and a compact subset.

EXAMPLE. In Theorem 4 and Theorem 7, the assumption that
υX is of countable type can not be omitted. In fact, there is a
realcompact Oz-space X with the following properties:

(a) X = E [jC, where E is an extremally disconnected subset
and C is a compact subset.

(b) βX is not Oz.
Let N be a countably infinite discrete space and let p be a

point of βN — N. Then NU{p} is realcompact as a subspace of βN.
Let X be the quotient space of the topological sum of N U {p} and
the unit interval I obtained by identifying the point p of N U {p}
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and the point 0 of /. Then X is realcompact and Oz since X is
Lindelδf and perfectly normal. It is also obvious that X can be
expressed as the union of a discrete subset and a compact subset.
But βX is not Oz since the homeomorphic image of / is a regular
closed subset of X which does not have a countable neighborhood
basis in X (see Theorem 5).
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Toshiji Terada, On spaces whose Stone-Čech compactification is Oz . . . . . . . 231
Richard Vrem, Harmonic analysis on compact hypergroups . . . . . . . . . . . . . . . 239

Pacific
JournalofM

athem
atics

1979
Vol.85,N

o.1

http://dx.doi.org/10.2140/pjm.1979.85.1
http://dx.doi.org/10.2140/pjm.1979.85.11
http://dx.doi.org/10.2140/pjm.1979.85.11
http://dx.doi.org/10.2140/pjm.1979.85.19
http://dx.doi.org/10.2140/pjm.1979.85.19
http://dx.doi.org/10.2140/pjm.1979.85.35
http://dx.doi.org/10.2140/pjm.1979.85.35
http://dx.doi.org/10.2140/pjm.1979.85.49
http://dx.doi.org/10.2140/pjm.1979.85.49
http://dx.doi.org/10.2140/pjm.1979.85.65
http://dx.doi.org/10.2140/pjm.1979.85.65
http://dx.doi.org/10.2140/pjm.1979.85.77
http://dx.doi.org/10.2140/pjm.1979.85.77
http://dx.doi.org/10.2140/pjm.1979.85.111
http://dx.doi.org/10.2140/pjm.1979.85.125
http://dx.doi.org/10.2140/pjm.1979.85.125
http://dx.doi.org/10.2140/pjm.1979.85.131
http://dx.doi.org/10.2140/pjm.1979.85.131
http://dx.doi.org/10.2140/pjm.1979.85.145
http://dx.doi.org/10.2140/pjm.1979.85.155
http://dx.doi.org/10.2140/pjm.1979.85.165
http://dx.doi.org/10.2140/pjm.1979.85.165
http://dx.doi.org/10.2140/pjm.1979.85.179
http://dx.doi.org/10.2140/pjm.1979.85.179
http://dx.doi.org/10.2140/pjm.1979.85.201
http://dx.doi.org/10.2140/pjm.1979.85.239

	
	
	

