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In a forthcoming paper, the second-named author asks
if every compact derivation of a C*-algebra -^into a Banach
-^-module X is the uniform limit of finite-rank derivations.
We answer this question affirmatively in the present paper
when X = sf by characterizing the structure of compact
derivations of C*-algebras. In addition, the structure of
weakly compact derivations of C;ί-algebras is determined,
and as immediate corollaries of these results, necessary and
sufficient conditions are given for a C*-algebra to admit a
nonzero compact or weakly compact derivation.

To fix our notation, we we recall some basic definitions. A
derivation of a C*-algebra j ^ is a linear map δ: ^f -> Jϊf for which
g(α&) = aδ(b) + δ(a)b, a, be Ssf. If x e Ssf, the map a —>ax — xa, ae <$/,
defines a derivation of Jtf which we denote by adx.

By an ideal of a C*-algebra, we always mean a uniformly closed,
two-sided ideal.

A C* -algebra Sϊf is said to act atomically on a Hubert space H
if there exists an orthogonal family {Pa} of projections in B(H), each
commuting with J ^ such that φ α Pa is the identity operator on
H, ,S^Pa acts irreducibly on Pa(H), and ^fPa is not unitarily equi-
valent to J^Pβ for a Φ β.

If {JK} is a sequence of C*-algebras, ®nJK denotes the C*-
direct sum of the J< ' s , i.e., φ % J < is the C*-algebra of all uniformly
bounded sequences {an}, an e J^ζ, equipped with pointwise operations
and the norm ||{αn}|| = sup% | | α j | . φΓ ^fn denotes the C*-subalgebra
of φ w *SK formed by all sequences {αj with ||αw||—> 0.

Acknowledgment. The second-named author wishes to express
his deep gratitude to V. S. Sunder for the warm hospitality he
extended to that author during a stay at the University of California
at Santa Barbara, which resulted in the initiation of the present
work.

2 Compact derivations* The following lemma is due to Ho
([3], Corollary 1):

LEMMA 2.1. Let H denote an infinite dimensional Hubert space,
B(H) the algebra of all bounded linear operators on H. If δ is a
compact derivations of B(H), then J = 0.
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Let Mn = n x n complex matrices, and let j& = φ ^ Mn denote
the restricted C*-direct sum of {MΛ}~=1. If x = (α?J 6 J^< then adx
is a compact derivation of jzf and is the uniform limit of the finite-
rank derivations δn = αrf(&i, , xn, 0, 0, •)• The following theorem,
which determines the structure of compact derivations of C*-algebras,
shows that this seemingly very special example actually typifies the
behavior of an arbitrary compact derivation.

Recall that a projection p of a C*-algebra j& is said to be
finite-dimensional if p^/p is finite-dimensional, and has dimension
n if pjzfp has dimension n.

THEOREM 2.2. Let .s*f be a C*~algebra, δ: jzf —> jzf a compact
derivation. Then there is an orthogonal sequence {xn} of minimal,
finite-dimensional, central projections of .5$? and an element d of
*Szf such that δ = add and Σ»x«d converges uniformly to d.

Proof. Let π denote the reduced atomic representation of ,s>S
([5], p. 35). π is constructed as follows: partition the class of irre-
ducible representations of «j^ according to unitary equivalence, and
from each equivalence class, choose a representation πa, acting on a
Hubert space Ha. Then π = φa πa, with π acting on H—QaHa.
Since π is a faithful *-representation of J ^ we may hence assume
with no loss of generality that j ^ acts atomically on a Hubert space
H = φ α Ha.

Letting J ^ " denote the closure of j y in the weak operator
topology, we assert that δ extends to a compact derivation δ of . j^~.
Identifying jzf in the usual way with a subalgebra of J^**, the
enveloping von Neumann algebra of J ^ we may extend the inclusion

jy** to a representation πw of j ^ * * onto J*f~ which is
, j^*)-ultraweakly continuous ([6], p. 53). Let 1 — z be the

support projection of kerπ^. Then z is central in j ^ * * and .s*f**z
is isomorphic to J*f~ via the isomorphism az —> πw(a)9 a 6 j ^ * * . Now
δ** \a**z is a compact derivation of j*f**z. Thus, if we define δ: <sχf~ —>
<Sz?~ by

3: πw(az) > πw(zδ**(a)), a e j ^ * * ,

it follows that δ is a compact derivation of J^~ which extends δ.
Since J ^ acts atomically o n ί ί = 0 α ί ί α , by Corollary 4 of [2],

jy~ = φaB(Ha). Let gα = the orthogonal projection of H onto Ha.
Since 3 is ultraweakly continuous and qa commutes with δ(^f) =
δ{*Sz?), qa commutes with 3(jy~), so that if δa denotes the restriction
of δ to B(Ha), then δ = φ α 3β.

Since 3 is compact, its restriction δa is a compact derivation
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of B(Ha). Furthermore, the compactness of δ implies that for each
ε > 0, {a: \\δa\\ > ε} is finite (see Lemma 3.2 in the next section). In
particular, {a: \\δa\\ > 0} is countable, say {αM}£U, and setting δn = δan,
we have limΛ \\δn\\ = 0. Since δn -φ. 0, we conclude by Lemma 2.1
that Han is finite-dimensional for each n.

We assert next that δ{jχ?~) £ J ^ This will follow from the
identification of j ^ ~ with j^**z via πw as defined above, provided
δ**(j^**) £ J^: But by the Kaplansky density theorem, the unit
ball JK** of j ^ * * is the <τ(j^**, j^*)-closure of the unit ball J ^
of Jzf, and so by [1], Theorem 6, p. 486, and the compactness of <?*,

of

Q uniform closure of

= uniform closure of

so that
Let #Λ = gα%. We claim that qn e <Saf. This is true since J ^ Π

B(HaJ is a nonzero ideal of B(Han) (it contains the range of δn φ 0,
since δ(j^~) £ j ^ ) f whence B(HaJ Q Jzf. Set xn = qn.

It follows that {#„} is an orthogonal sequence of minimal, finite-
dimensional, central projections in J^Γ Choose dn eB(Han) — <S*fχn

such that δn = addn and | | d n | | ^ p j | . Since dw is in £( i ϊ*J , {ώΛ} is
an orthogonal sequence, and since \\δ%\\ —> 0, Σ w ώΛ converges uniformly
to an element d e Jtf. But then

COROLLARY 2.3. Every compact derivation of a C*-algebra is
the uniform limit of finite-rank derivations of that algebra.

COROLLARY 2.4. A C*-algebra admits nonzero compact deriva-
tions if and only if it contains nonzero finite-dimensional central
projections.

Motivated by the concept of strong amenability of C*-algebras,
in [7] a derivation δ of a unital C*-algebra j y was called strongly
inner if δ = adx for x in the uniformly closed convex hull of
{δ(u)u*: u a unitary element of J^}. Thus by Corollary 2.3 above
and Corollary 2.5 of [7], we deduce

COROLLARY 2.5. Every compact derivation of a unital G*-algebra
is strongly inner.
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3* Weakly compact derivations* In this section, the structure
of weakly compact derivations of C*-algebras is determined.

Let H be a Hubert space, B(H) the algebra of bounded linear
operators on H, and let ^Γ denote the ideal of compact operators in
B(H). The first theorem gives an analog of Ho's theorem for weakly
compact derivations of B{H).

THEOREM 3.1. Let δ be a derivation of B(H). The following
are equivalent:

(1) δ is weakly compact.
(2) The range of δ is contained in J%Γ.
(3) δ = adT with Te.βT (and \\T\\ ^

Proof (1) => (2). Since δ is inner, δ(.2Γ) C 3Γ, and J2T** = B(H),
whence 5 = (δ|%-)**. Now δ\.^ is weakly compact, so by Theorem
2, p. 482 of [1], δ = (δ\jr)** maps B(H) into 3f.

(2)=>(3) . This is an immediate consequence of Lemma 3.2 of
[4].

(3)=>(1) . By considering real and imaginary parts of Γ, we
may assume that T is self-adjoint. Since T is compact, the spectral
theorem allows us to approximate T uniformly by linear combinations
of finite-rank projections, and so we may approximate δ = adT uni-
formly by linear combinations of derivations of the form adp, p a
finite-rank projection. By [1], Corollary 4, p. 483, we may hence
assume that T is a finite-rank projection. But then δ = ad T is a
sum of derivations of the form adp, p a rank-one projection, so we
assume that T — p is a rank-one projection.

Let X denote the Banach space if 0 H endowed with the norm
\\(xf y)\\ = max {|I#||, \\y\\}. Simple matricial computations show the
existence of a one-dimensional subspace S of pB(H) + B(H)p such
that (pB(H) + B(H)p)/S is isometrically Banach space isomorphic to
X, and is hence reflexive. It follows that pB(H) + B(H)p is reflexive.
Since δ = adp maps B(H) into pB(H) + B(H)p, we conclude by [1],
Corollary 3, p. 483 that δ is weakly compact.

LEMMA 3.2. Let {Ha} be a family of Hilbert spaces, and let
δ: φ α B(Ha) —> φ α B(Ha) be a weakly compact derivation. Then for
all ε > 0, {a: \\δ\miIa)\\ > ε} is finite.

Proof. Suppose the lemma is false. Then there exists a sequence
{#*}SU of indices and a = (aa) eφaB(Ha) such that ||δ(α)αJ| > 1, for
all n.

Since any compression of δ is weakly compact, we can assume that
δ acts on 0 % B(HaJ. Let φ ^ B(HaJ denote the restricted direct sum
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of {B(HaJ}. Then since | |δ(α)αJ| > 1, for all n, there is a linear
functional / such that f(δ(a)) = 1 and / vanishes on 0 ^ B(Han).

Define {bk} £ 0 W B(Han) by

0 , if n < k ,

n , if w ^ Jfc .

Then 6*. —»0 in the weak operator topology (WOT), and so δ(bk) —>
0(WOT) (since δ is inner, it is WOT-continuous), whence by weak
compactness of δ9 δ(bk)^O weakly. But δ(bk) — δ(a)eφnB(Han), for
all k, and so by the choice of /, f(δ(bk)) = f(β(a)) = 1, for all k, a
contradiction.

The next theorem determines the structure of weakly compact
derivations.

THEOREM 3.3. Let δ: .$/'—> .$/ be a derivation of a C*-algebra
,S&1 The following are equivalent:

( 1 ) δ is weakly compact.
( 2 ) There exists a sequence {In} of orthogonal ideals of j y such

that each In is isomorphic to the C*-algebra J ^ of compact operators
on a Hilbert space Hn, and an element d e φ % In £ *$/ with δ — add.

Proof. (1) => (2). We use Theorem 3.1 and Lemma 3.2 to adopt
the proof of Theorem 2.2 to the present situation. As before, we
may assume that ,jy acts atomically on H = 0 « Ha. As in the proof
of Theorem 2.2, we extend 8 to a weakly compact derivation δ of
j y ~ and use Lemma 3.2 to deduce the existence of a countable set
{an} of indices such that δa = 0 except when a = a%, δn = δan is a
weakly compact derivation of B(Han), and | |3n | |—>0. By the weak
compactness of δ and [1], Theorem 2, p. 482, we also deduce as before
that 3(jy~") Q ,sy. By Theorem 3.1, δn has range in :7<ίn = compact
operators in B(Han) and δn = adcn for c ^ e . ^ ς with | | c w | | ^ | |S n | | .
Since j y Π J ^ i is a nonzero ideal of ,$>fqan 2 .ί^i (it contains the
range of δn =£ 0), , i ^ Π J ^ is a nonzero ideal of ^ΓnJ whence J%ΓΛ £
J^Γ Thus In = J ^ and d = Σ » c^ satisfy the conditions of (2) for δ.

( 2 ) => (1). Since d = Σ n d n e φ % 7n, δ = add is the uniform limit
of the derivations δn = αcί(ΣΓ d*), and so it suffices to show that
each addk is weakly compact.

We suppress the k's and assume with no loss of generality that
d ^ 0. Theorem 3.1 implies that every inner derivation of Sf is
weakly compact, and so add\τ is weakly compact. It hence follows
by induction and the formula

ad dn+1 = dnad d + (ad dn)d
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that addn\I is weakly compact for all positive integers n. We
conclude that add1/2\Σ is weakly compact; but since

add{a) = ad dι/\ad1/2) + ad d1/2(d1/2a)

and d1/2α, ad1/2 e /, for all a e ,JV, it follows that ad d is weakly com-
pact on

COROLLARY 3.4. A C*-algebτa admits nonzero weakly compact
derivations if and only if it contains a nonzero ideal isomorphic
to the C*-algebra of compact operators on a Hilbert space.

The next two corollaries determine the von Neumann algebras
which admit nonzero compact or weakly compact derivations. We
first preface them with the following remarks.

Let R be a von Neumann algebra, and let R = RI@RU®RIU be
the decomposition of R into its type I, II, and III parts. Since RΣ

is type I, there exists a family {pa} of pairwise orthogonal central
projections in RΣ such that φ α pa — identity of RΣ and paRΣ =
PaZΣ(S) B{Ha) (= denotes isomorphism), where Ha is a Hilbert space
and Zx = center of Rz ([6], §2.3). We set Ra = paRj(Za = paZΣ) and
call {Ra}({Za}) the discrete components of Rz{Zj).

COROLLARY 3.5. A von Neumann algebra R admits a nonzero
weakly compact derivation if and only if a discrete component of
the center of its type I part contains a one-dimensional projection.

Proof. (==>). Let δ: R —> R be a nonzero weakly compact deriva-
tion. We show first that S Ξ O O Π RU and Rni. Suppose δ φ 0 on
Rn. δ maps Rn into RIIf so δ\BlI is a nonzero weakly compact
derivation of Ru. Hence by Corollary 3.4, Rn contains an ideal ^
isomorphic to the C*-algebra of compact operators on some Hilbert
space H. If J^~a denotes the ultraweak closure of ^ then ^~a is
an ultra weakly closed ideal of Ru such that ,^~* ~ ^ * * = B{H),
and so ^~° is a type I direct summand of RII9 which is impossible.
The same argument shows that δ = 0 on RIU.

We conclude that δ\Bl is a nonzero weakly compact derivation
of RIf so there is no loss of generality by assuming that R = Z (x)
B(H) for an abelian von Neumann algebra Z and a Hilbert space £f.
Applying Corollary 3.4 and reasoning as before, we find a projection
peZ such that pZ (x) B(H) ~ B(K) for some Hilbert space K. Thus
pZ (x) B(H) is a factor, whence pZ is one-dimensional.

(<=). If j? is a one-dimensional projection of the discrete com-
ponent Za corresponding to Za (x) B(Ha) and Ta is a nonzero compact
operator on Ha, it is immediate from Theorem 3.1 that ad(p®Ta)
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is a nonzero weakly compact derivation of R.

COROLLARY 3.6. A von Neumann algebra admits a nonzero
compact derivation if and only if its type I part has a nonzero
finite-dimensional discrete component.
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