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Let 2¢0; be a plane region and ~let 20(z) be its Poincaré
metric. Let £ be the complement of 2 and write a(Q)=a(l: )=

-{n" S lz —C|™* da(z)}l/z, where do(z) =dxdy and (€.

Ag2) :Eﬂa(z: 2) for all zc 2 only when 2 is a disk less (pos-
sibly) a closed subset of inner capacity zero. Let ¢ be
holomorphic and univalent in 2 and let Ss(z, {)=—6(3%/0200) X
log (#(z) — #(0))/(z — ). Here Ss(z, 2) is the Schwarzian deriva-
tive of ¢. We show

Su(z,0) | < Bio@)a0@| 1 + (1 —2©) 1/2]; LeQ.
| Ss(2, ©) | < 620(2) Q@[ +( %,@) e

1. Introduction. In his paper [4] Gehring was concerned with
the problem of extending to an arbitrary simply connected plane
region £ certain results relating the univalence of a function ¢
holomorphic in the unit disk 4 with the magnitude of its Schwarzian

derivative
Sy(z) = (%) - %(%) s ¢ =29(),zed.

We shall be concerned with generalizing the following two proposi-
tions to an arbitrary plane region Q.

ProrosiTION 1. If 6 is holomorphic and univalent in 4, then
1S,()| = 6L — [z, zed,
and the constant 6 is sharp.
PROPOSITION 2. Let 2 be a simply connected domain and let

Ao(2) be tts Poincaré metric. If ¢ is holomorphic and univalent in
2, then

[S;(2)] < 1203(2) , ze 8,

and the constant 12 is sharp.

Proposition 1 is due to Kraus [5] and Proposition 2 is due to
Lehto [6]. In this direction Nehari [7] has shown that if ¢ is
holomorphic with |S,(z)] < 2@ — [2])™* in 4, then ¢ is univalent in
4 with the constant 2 being the best possible.
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We shall show that the above two propositions can be immediate-
ly read off from one single inequality (Corollary 8) which is valid
for any plane region. Our result can be easily extended to open
Riemann surfaces too but we shall not pursue this point. Our argu-
ments rely heavily on well known classical results of Bergman and
Schiffer [2]. In order to be self contained, however, we will attempt
to provide proofs to most crucial statements. The final result
obtained in this paper (Theorem 2) involves a string of sharp
inequalities amongst the Schwarzian derivative, the span or condenser
capacity, the analytic capacity, the capacity and the Poincaré metric.
In this string of inequalities, the inequality between the span
(condenser) capacity and the analytic capacity is a well known result
of Ahlfors and Beurling [1]. Here we provide a different proof of
this result which is based on our Theorem 1. The representation
formula of Theorem 1 was first mentioned in Schiffer [9] in case
{=cef and 2 has the largest complementary area amongst all
regions which are conformally equivalent to 2.

2. Capacities and the Poincaré metric. Let 2 be an open region
in the extended plane and let {e 2. Usually, {+# - but the transi-
tion to { = o is trivial. H(Q) stands for the class of holomorphic
functions in Q and H,(2) denotes the class of multivalued holomor-
phic functions f in 2 such that | f(z)|, z€ 2, is single valued. We
write

171l =swp 7], DIAl=| 17 @rde@

where do(z) = dady is the Lebesgue area measure. Consider the
following families:

Z(2) ={fe HQ:Ifll. =1, fC) = 0},

7)) = {f e H,(: |Ifl =1, fIO) =0},

Z(2) ={fe H@Q): D[f] = =, fO) = 0} .
We now introduce (cf. [1]) the analytic capacity

C(0) = Cp(L: Q) = max {| f'(D: f e ()},

the capacity

Cs(0) = Cp(C: 2) = max {| f'(Q)]: f e (D)}
and the span or condenser capacity

Co(Q) = Cp(&: Q) = max {[f'(D)]: f e Z(Q)} .
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We note that C,({) is well defined and that by f({) = 0 in &7(2) we
mean that at least one branch of f(z) vanishes at (.

Assume now that 2¢0, (i.e., 2 has a nontrivial Green’s func-
tion) and thus 2 has the unit disk 4 as its universal covering space.
The Poincaré metric My(z) is defined as follows: For the unit disk
4, M(w) =1 — |w|®)™* while for 2

M(2) = (@) [ (@) [T, 2 =n(w)e?,

where 7: 4 — 2 is a universal cover map. We denote by 0d,(z) the
distance from z to the boundary of 2. M\o(2) is monotonic deereasing
with 2 and thus

No(2)00(2) £ 1, ze .

Moreover, if 2 is simply connected then, in view of Koebe’s 1/4
theorem,

No(2)0,(2) = 1/4 zel.
Clearly, C;, C;, C, and \, are conformally invariant and therefore
2.1 Cp(z: 2) = Cy(z: 2) = Ci(z: 2) = n(2), zef,

whenever £ is simply connected.

It is also evident that Cy,(z: 2) < Ci(z: 2) and it is a theorem of
Ahlfors and Beurling [1] (see also Corollary 2) that C,(z: Q) < Cy(z: 2).
Moreover, Cy(z; 2) = N\,. Indeed, let 7;4— 2 be a universal cover
map 2 = 7w(w). Then

Co(z: Q) = max {| f'(2)|: f e Z.(2)}
= |7 ()" max {|g'(@)]: g = fomeF,(), fezc.(2}
= |[7'(@)| " max {|g'(w)]: g € Z, (D}
= |7 (@) [ Cs(w: 4)
= Ng(@) [T (@) |7 = No(?)

where (2.1) has been used. Consequently,
(2.2) Cp(z: Q) = Cp(2: 2) = Co(z: 2) = M(2) = 052'(3)

and we note that, if 2¢0,,, then Cyz: 2) >0 for all ze 2. The
condition Q¢ 0,, means that there exists a nonconstant holomorphic
function f in 2 with D[f] < oo.

We conclude this section by recalling the following well-known
lemma of Ahlfors and Beurling [1]:

LEMMA 1. Let E be a measurable set with a finite Lebesgue
measure o(E) in C. Then
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S da(z)‘ < VToB)

Ez——

sup

eC

with equality holding, if and only if E is a almost everywhere a
disk of radius Ve(E)/x .

3. The slit mappings. Here we assume that the region 2 is
bounded by n closed analytic curves C,, ---, C, and we denote by C
the boundary o2 = ., C, of 2. We assume that C, is outer and
we let {eQ. Let

P@) = p(z:0) = —1= +ale — O +

and

Q(Z)=q(z:C):—1—+b(z—c)+
z—C

be the horizontal and vertical slit mappings, respectively, of Q.
We write

D(z) = D(z: ) = %(p(z) — ¢(2))
and
U(e) = U(2:0) = —(p(z) + () .

Then @(z) and (z — {)¥(z) are holomorphic on 2 with @) = 0.
Further, ¥'(z) is univalent on 2 with pole at {. It maps 2 onto 2*
with E = C — 2* being bounded. Clearly, d® = d¥ on C and there-
fore ® =¥ — X, on C,, where \, is a constant depending on the
component C,, 1<k <n. Also @&, and ¥(C,) are closed analytic
and convex curves. One easily shows that

(3.1) D[g] = nC%((: Q) = o(B) = §<a —b).
Let

v(@) =) =0 +
( U(z: )"

« maps £ conformally onto Q' = (2) with ¢) ={. We write

I'=Ui,I',=02" with I', =+(C,), 1=<k=<mn. We now establish

an integral formula representing @ in terms of ¥ (compare also

Schiffer [9]).
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THEOREM 1. The integral formula

dot) . _ A
D(z:¢) = SEW—t E=C-T®),

~

holds.

Proof. We first note that if f is holomorphic on 2 then, using
the residue theorem,

_ 1 V()
1) = g, Ao D e

Specializing this formula for f = ¥ we obtain

W V@ 1 & _¥@
() (z)= S O =@ ™ ™ Sok‘b@«/r(f)—«/f(@df

Writing w = () and @ = 4(7), v = C, and recalling the definition
of +(z) = 4(2: ) we have

Sc,, () —LE) gz :S 1 L o

P(7) — P (2) now—¢w—w
which is zero for each k =1, ---, n. Therefore, writing f = 0¥,
_ 1 dw
&) = 2m§ lo —CP @ —w

Let E' = C — 2', then according to Green’s formula,

_ 1 1 do(w)
@) = SE @ -0 (0 — @ —w)

Hence
_w—¢ do(w)
o= L @ — '@ — O — w)
_w— C S do(w)
T oD -1 - 2=
_ w—CS da(t) 2‘1‘8 do(t)
T el —tlw— 0 T E?l"(z)—t.

This concludes the proof.

REMARK. The theorem remains valid for the general case that
2¢0,,. This can be accomplished via a canonical exhaustion of 2
by regular regions {2,}.
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The following corollary was also obtained in Burbea [3] and
Sakai [8]. The methods in [8] are different from ours.

COROLLARY 1. Let 2¢0,, Then ||9||., = C,({) with equality
holding if and only if Q2 is conformally equivalent to the unit disk
4 less (possibly) a closed null Cp-set.

Proof. According to Lemma 1 and (3.1) we have
19l = 2v/7aE) = C,(0) -

The statement about equality follows from Lemma 1 too.
The theorem of Ahlfors and Beurling [1] is also a consequence
of the theorem as the following corollary shows.

COROLLARY 2. C,(§) < Cx(0).

Proof. We may assume that C,({) > 0. Let f(z) = @z)/C,).
Since @) = 0 it follows from Corollary 1 that fe.<Z.(2). Thus
|2'(©)|/Ch(Q) < Cx(). However, 9'(C) = (1/2)(a — b) and the assertion
follows by appealing to (3.1).

REMARK. One can show (see [8]) that equality in the last
corollary occurs if and only if either (i) Cz() =0, or (ii) 2 is con-
formally equivalent to the unit disk 4 less (possibly) a closed null
Cy-set.

4, The Schwarzian derivative. We again assume that 2 is a
regular analytic region as mentioned before. The more general case
can be always obtained by a canonical exhaustion. Let Hy(R) be the
Hilbert space of all holomorphic functions f in 2, having single
valued integrals and so that

i1 = 1r@rdoe < - .

This space possesses the (reduced) Bergman kernel function Ky(z, {).
We have the obvious identity

Koz, 0) = %@'(z: 0

and therefore

(4.1) Co(l: Q) = VKL, D) .
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The “adjoint” kernel [2] is given by

Loz, O) = —%ﬂf’(z: 0.

This kernel is symmetric in z and {. Since d® = d¥ on the boundary,
we have K,(z, {)dz = —L.(z, {)dz for zc 02 and {e 2. Also,

Ly(z, ) = %6—}2—);

where ly(z,{) is symmetric and holomorphic in (2, {)e2 x 2. If
(e is fixed then l,( , {)e Hy(2). We have (see also [2, p. 243)])

- l.()(z, C) ’

1o, O = {116, Ordoe) = Ko, D) — TG, D

where

o _ 1 _do(
Tt D = = SEW o

Here E, = C — 2. We also write
(4.2) al) = all: Q) = ValyL, )

and thus mwa?{) represents the image area of E, under the linear
mapping (z — {)"*. Therefore

aQ) S VrKl( D) = Co(l: ),

equality holding, for each (e @, only if 92 is a circle (including
circles passing through o). Further, we have

lo(z, ©) = (la( ', ©), Kol , 7))

and therefore

lLa(z, O = [1Ta(, OIPNKR(, 2P

or

(4.3) [1a(2, O)I* < Koz, D)Ko, 0) — Ta(C, O] -
A fortiori,

(4.4) [lo(z, )P < Kolz, 2K, D) -

Let @ = ¢(z) be a conformal mapping of 2 onto 2*. Then, for

T = ¢(C)’
(4.5) Ko(z, §) = Ku(w, T)¢'(2)¢'(0)
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and
Ly(2, €) = Lo(w, 7)$'(2)¢'(C) .

From the last formula it follows that

4.6) L@, D' (26 (0) = la(z, ©) — és,ﬁ(z, 0,
where
@ 8@ — 40
Sy(e, 0 = —6-0 log L2 =20

we note that

Sie 2 =80 = (5) ~ H&): 6=90 ze0,

is the Schwarzian derivative of ¢(z).
From (4.4) we have

[lo(@, )" = Kol(®, @) Ko7, T) ,

and therefore, using (4.5) and (4.6),

Loz, ©) — ‘61789’“’ 0| < Kule, HELL, D) .

Consequently,
lS,{,(Z, C)l é Gﬂ{[KQ(zy E)K!)(Cy Z)]Uz + !l!)(z, C)“ .
In view of (4.1), (4.2) and (4.3) we therefore have

1812, 01 = 60,0 1 + (1 - S

This is the desired result. If now we use (2.2), we arrive at our
main theorem:

THEOREM 2. Let 2¢0,,. If ¢ is holomorphic and univalent in
2 we have the following sharp string of imequalities

[Se(z, O)| = 6CD(z)CD(C)[1 + (1 _ %;%%7)1/2]

< 60,00 1 + (1~ g(fc)) )

< 60,001+ (1~ G|
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< MO 1+ (1 - 2L,

Proof. The above holds for regular regions. The general case
is obtained by a canonical exhaustion.

COROLLARY 3. Let 2¢ 0, and let ¢ be holomorphic and univalent
wm 2. Then

8,5 01 5 OO 1+ (1= EH) |5 s ce0,

and wn particular

1S,@)] = i) 1+ (1 - &(z;)] . zeQ.

The inequalities are sharp. The inequality
[S,(2)| = 67(2)

18 sharp only when 2 1is a disk less (possibly) a closed subset of
imnear capacity zero. Otherwise, we have the sharp inequality

1S,(2)| = 120\i(2) .

Proof. This follows from the fact that a(z) = a(z: 2) < \(2)
and equality at all points z ¢ Q holds if and only if Q is a disk less
(possibly) a closed subsets of inner capacity zero.

This generalizes the contents of Propositions 1 and 2.

Added in proof. The author has learned A. F. Beardon and
F. W. Gehring have recently also generalized the contents of the
present Proposition 2.
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