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If S is an arbitrary sequence of pesitive integers, define
P(S) to be the set of all integers which are representable
as a sum of distinct terms of S. Call a sequence S complete
if P(S) contains all sufficiently large integers, and sub-
complete if P(S) contains an infinite arithmetic progression.
We will prove the following theorem: Let nth term of
the integer sequence S have the form jf(n) + O(n*), where
f is a polynomial and where 0 = o < 1; then S is subcomplete.
We further show that S is complete if, in addition, for
every prime p there are infinitely many terms of S not
divisible by p. (We call any sequence satisfying this last
property an R-sequence.) We will then extend these results
to considerably more general seguences.

It can be shown in various ways ([3], [4]) that if f is a poly-
nomial which maps positive integers to positive integers, then the
sequence S = {f(1), f(2), ---} is subcomplete, and if in addition S is
an R-sequence, S is complete. In this work we use results of
Folkmann’s fine paper [2] to generalize these results to perturbed
polynomial sequences f(1) + ¢(1), f(2) + t(2), ---, where ¢ is a function
with sufficiently slow growth. We first state two results of [2].

THEOREM A (Folkman). Let A = {a,} be a nondecreasing sequence
of positive integers satisfying a, = On*) for some 0 L a<1l. Then
A 1s subcomplete.

THEOREM B (Folkman). Let A = {a,} be a nondecreasing sequence
of positive integers with disjoint subsequences {b,}, {c.}, and {d,}.
Suppose that

(1) lim 1 Ew,bi:oo for each m >0,

e bn+m i=1

that ¢, > d, for each m, and that the sequence {c, — d,} is sub-
complete. Then A is subcomplete.

We now state

THEOREM 1. Let S = {s,, s,, -+ -} be asequence of positive integers
of the form s, = f(n) + O(n*) where f is a polynomial of degree
>l and 0L a<1. Then S is subcomplete.
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Before proving this theorem we first state the case k¥ = 1 of it
as a lemma. The author is grateful to Carl Pomerance of the
University of Georgia for the lemma in its present form. The autho’s
verion of this lemma required a < 1/2, and Theorems 1, 3, and 4
were correspondingly weaker.

LEMMA 1 (Pomerance). Let S ={s, s, ---} be a sequence of
integers of the form s, = an + O(n®), where a >0 and 0 < a < 1.
Then S is subcomplete.

Proof. Let t, be the sequence S arranged in nondecreasing
order. If ¢, =s,, it is clear that |m — n| = O(n®), so that

t, = am + O(m*) = an + O(n®) .

Hence we may assume without loss of generality that S is monotone
nondecreasing. Write s(n) for s, and form three disjoint subsequences
of S given by

b, = s@Bn + 2),
¢, = s@Bn + Mn*]+ 1),
» = 5(3n) ,
where M is large enough that ¢, > d, for all n. Then 0 <c¢, — d, =

O(n®) for all n. Let {e,} be the sequence {c¢, — d,} in nondecreasing
order. Then

e, = max(c; — d;) = O(n") ,

and by Theorem A, {e,}, and hence {¢, — d,}, is subcomplete. Hence,
by Theorem B, S is subcomplete. This completes the proof.

Proof of Theorem 1. The case k=1 is just Lemma 1, so we
assume the theorem to have been proved for some degree k = 1.
Let S satisfy the hypotheses with f having degree k¥ + 1. Without
loss of generality we may assume that S is strictly increasing.
Form three disjoint subsequences of S given by b, = 8;,, ¢, = S3,_1,
d, = 83,_,. Then

M

b, = oo

lim 1

oo bfn—{-m i

1

for any m, and ¢, — d, = fy(n) + O(n*), where f, is a polynomial of
degree k. Thus {c¢, — d,} is subcomplete by the induction hypothesis,
and hence S subcomplete by Theorem B. This completes the proof.

Note that Theorem 1 does not require f to be integer-valued,
or even to have rational coefficients. We will see later that Theorem
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1 can be made considerably more general than this. We also remark
that Theorem 1 can be proved for bounded perturbations by means
of Theorem B alone. To get the full result we must use the power-
ful Theorem A.

We will prove a theorem which enables us to conclude that an
R-sequence satisfying the hypotheses of Theorem 1 is complete.
Some preliminary results are necessary. We first state two further
theorems taken from [2] and [3] respectively.

THEOREM C (Folkman). Let B =1{b,b, ---} be an increasing
sequence satisfying (1). Then for each integer r > 0, there is an
integer q(r) such that for any k = 0, at least one of the numbers

k+Dr, E+27r, -, &+ q0)r
is in P(B).

THEOREM D (Graham). Let A be an R-sequence. Then for any
integer m, P(A) contains a complete system of residues modulo m.

We next prove three simple lemmas.

LeMMA 2. Let S be o sequence with disjoint subsequences A and
B. If A is an R-sequence and B is subcomplete, then S 1s complete.

Proof. Since B is subcomplete, P(B) contains an infinite
arithmetic progression {r + u,2r + u, ---}. By Theorem D, P(4)
contains a complete system of residues modulo =, say k <k, <
«e. < k,. Letn be any number =7 + u + k.. For some k;, we have
k; =n — uw(modr). Then (n — u — k;)/r is an integer 7 = 1. Thus
n = (jr + w) + k;. Since k, € P(A) and jr + we P(B), ne P(S). Thus
S is complete.

LeMMA 3. Let the increasing sequence B = {b,} satisfy (1). Let
B’ = {b}} = {b;,} be a subsequence of B with i,., =<1, + 2. Then B’
satisfies (1).

Proof. Let b, =b;. Then

,1 ibiz ! (b; +bjo+ --°)
bn+m =1 it+em
1 g
= 1/2 2.b; .
j4rom =1

But the last expression — « as j— oo for any m; so B’ satisfies

.
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LEMMA 4. Let A be a subcomplete sequence, and let B be an in-
creasing sequence satisfying (1). Then it is possible to form a sub-
complete sequence B’ by adjoining to B a finite number of terms
of A.

Proof. Let P(A) contain the infinite arithmetic progression
{r +wu,2r +u, ---}. By Theorem C there is a ¢ such that for any
k=0, at least one of (k + L), ---, (k + @)r is in P(B). It is clear
that there is a finite subsequence A4, of A such that P(4,) contains
all the numbers 7 + u,2r +u, ---,gr +u. Let j=q+ 1, and
choose ¢ among j —gq, ---, 5 — 1 so that 47 is in P(B). Then jr +
w=1r+ @G —ur+u But (j —i)r + ue P(4,). Thus any number
jr +u with j =2 ¢ + 1 is a sum of a number in P(4,) and a number
in P(B). Therefore if we form B’ by adjoining the terms of A4, to
B, we see that B’ is subcomplete.

We are now in a position to prove

THEOREM 2. Let S be an R-sequence which is increasing, with
disjoint subsequences A = {a,} and B = {b,}. If A is subcomplete
and B satisfies (1), then S is complete.

Proof. Let @ =1{q, q,, ---} be the set of all primes ¢ with the
property that there are infinitely many terms of B which are not
divisible by q. We must partition B into two subsequences B, and
B,, where for each ¢e @, B, has infinitely many terms not divisible
by ¢, and where B, satisfies (1). This can be done in the following
. manner. First put into B, a term b, not divisible by ¢q,. Next put
into B, a term b,.;, 7 = 2, not divisible by ¢,. Continue to place
terms b, into B,, where successively the terms are not divisible by
Qs, Qoy @1y oy Q35 Qay Goy @3, 44, - - -5 this can be done so that each term
chosen has an index at least two greater than the previous one
chosen. This defines B,. But by construction B,, formed by the
terms remaining, satisfies the hypothesis of Lemma 8. Thus we
have accomplished the desired partition.

We now apply Lemma 4 to the sequences 4 and B, to form a
subcomplete sequence B, consisting of the terms B, and a finite
number of terms of A. Now form a sequence A, consisting of all
terms of S not in B,. Then A, is an R-sequence, since S is an R-
sequence and since any prime ¢ which is a non-divisor of infinitely
many terms of B, also is a nondivisor of infinitely many terms of
B,, and hence of A4,. Thus S has the disjoint subsequences A,
and B, with A, an R-sequence and B, subcomplete. Therefore, by
Lemma 4, S is complete.
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We may now derive our desired result on perturbed polynomials
as an easy corollary to Theorem 2.

THEOREM 8. Let S satisfy the conditions of Theorem 1, and let
S be an R-sequence. Then S is complete.

Proof. Let S, = {s, s, ---}and S, = {s,, s, ---}. Then s, is sub-
complete since it satisfies the conditions of Theorem 1, and S, clearly
satisfies (1), and may be assumed without loss of generality to be
increasing. Hence S is complete by Theorem 2, and the result is
proved.

It is possible to extend Theorems 1 and 8 to considerably more
general sequences, namely ones in which f is a “polynomial” with
nonintegral exponents. Specifically, we have

THEOREM 4. Lelt a,a, ---,a, and v, > v, > -+ >, be real
numbers, where a, >0 and v, = 1. Let f(n) = am™ + a,n™ + ---+
an’. Let S=1{s,s, -} be a sequence of positive integers of the

form s, = f(n) + O@*). Then S is subcomplete. If in addition, S
18 an R-sequence, S is complete.

Proof. The proof is very similar to that of Theorems 1 and 3,
so we will not carry out all the details. The proof for 1 < v, < 2
is the same as for Lemma 1, except that an is replaced by f(n) and
a is replaced by

max (@, v; — 1, max7,) .
7<t

Now assume the theorem true for kt < v, <k + 1, where & is an
integer = 1. If S satisfies the hypotheses with b + 1 Z v, <k + 2,
the construction of Theorem 1 can be applied. The only additional
detail is that terms like #»” — (n — 1) produce infinite series. How-
ever, this causes no difficulty, since all but a finite number of terms
grow more slowly than n* and can be included in the perturbation
term. Thus S is seen to be subcomplete.

Finally, if S is an R-sequence, Theorem 2 may be applied to
show that S is complete. This completes the proof.

We conclude with a few remarks on possible extensions of the
results given. One obvious possibility is to extend the allowable
functions f in Theorem 4. This can certainly be done since it is
not hard to see that f may be permitted to be an absolutely con-
vergent infinite series with terms of the form a,n’c. More interesting
would be an extension to functions satisfying some smoothness
condition. Another possibility would be to weaken the condition
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on the perturbation term. A result of [1] shows that Theorem 1 is
false with a« > 1. It seems possible that the theorem holds for
a = 1. It would be interesting to weaken the conditions of Theorem
2. Thus, in [2] it is shown that for a sequence of Theorem A to
be complete, it suffices that P(4) contain a complete system of re-
sidues with respect to every modulus. It seems unlikely that such
a weak condition would suffice in the present case, but the author
knows no counterexample.
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