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Recently, L. Carlitz extended certain known generating
functions for Laguerre and Jacobi polynomials to the forms:

Σ c<n"
+λn)—% and Σ d^+λn'^^—% ,

*=o n\ n=o nl

respectively, where c(

n

a) and d^'^ are general one- and two-
parameter coefficients. In the present paper some generali-
zations of Carlitz's results of this kind are derived, and a
number of interesting applications of the main theorem are
given.

1* Introduction and the main results. Motivated by his
generating function [2, p. 826, Eq. (8)]

(1.1) Σ Lϊ+λ*\x)t* = ( 1 + v)a+1 exp (-XV),
w=o 1 — \v

where a, λ are arbitrary complex numbers and v is a function of
t defined by

(1.2) v = ί ( l + v)λ+1 , v(0) = 0 ,

and by its subsequent generalization due to Srivastava and Singhal
[9, p. 749, Eq. (8)]

Σ Pl
(l.o) w=°

= (1 + ξ
where ζ and η satisfy

(1.4) (x + irs = (χ- I Γ V = l ί ( i + ξy+χι + τjy+ι,

Carlitz [3] has recently derived generating functions for certain
general one- and two-parameter coefficients [op. cit., p. 521, Theorem
1 and Eq. (2.10)]. Our proposed generalizations of Carlitz's main
results in [3] are contained in the following

THEOREM. Let A(z), B(z) and z~xC(z) be arbitrary functions
which are analytic in the neighborhood of the origin, and assume
that

(1.5) A(0) - J3(0) = C'(0) = 1 .
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Define the sequence of functions {fnKx)}n=o by means of

(1.6) A(z)[B(z)Y exp (xC(z)) = Σ fίa)(x)^~ ,
n=:0 %?

where a and x are arbitrary complex numbers independent of z.
Then, for arbitrary parameters X and y independent of z,

*=° n\ 1 - ζ{λ[Bf(ζ)/jB(ζ)] + yC\Q]

where

(1.8) C = *[B(C)Γexp(i/C(ζ)).

More generally, if the functions A(z), Bt(z) and z^C^z) are
analytic about the origin such that

(1.9) A(0) - 5,(0) - CJ(0) - 1 , i - 1, , r; j = 1, • , s ,

(1.10) A(s) Π ί[Bi(«)]β'} exp ( Σ

, /or arbitrary a's, λ's, x's αwtZ /̂'s independent of z,

0 n\

(ζ)]"4} exp ( g *A(

Σ »,C}
3=1

where

(1.12) ζ = t Π {[5,(0]^} exp ( Σ »,Cy(ζ)) .

REMARK 1. For x = 7/ = 0, our generating function (1.7) would
evidently reduce to Carlitz's result given 'by his Theorem 1 [3, p.
521].

REMARK 2. The general result (1.11) with r = 2 and xs — y5 = 0,
j = 1, , s, is essentially the same as a known result on generating
functions for certain two-parameter coefficients, which is due also to
Carlitz [3, p. 521, Eq. (2.10)].

REMARK 3. Formula (1.7) with λ = y = 0 and its generalization
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(1.11) with Xi = ys = 0, i = 1, , r; j = 1, , s, evidently correspond
to the generating functions (1.6) and (1.10), respectively.

2* Proof of the theorem* By Taylor's theorem, (1.6) gives

(2.1) Γ:\x) = Dt{A(z)[B(z)Y exp («C(«))} U ,

whence

(2.2) /iβ + 2 '(a! + »») = Df{f(z)[φ(z)r} U ,

where, for convenience,

(2.3) f(z) = A(z)[B(z)Y exp (xC{z)) , φ(z) = [B{z)f exp

From (2.2) we have

(2.4)

where f{z) and φ(z) are given by (2.3).
We now apply Lagrange's expansion in the form [6, p. 146,

Problem 207]:

(2.5) _ f(Q

where the functions f(z) and φ(z) are analytic about the origin, and
ζ is given by

(2.6) ζ - tφ{Q , 0(0) Φ 0 ,

and the generating function (1.7) follows readily from (2.4) under
the constraints (1.5) and (1.8).

The derivation of the multivariable (and multiparameter) generat-
ing function (1.11) runs parallel to that of (1.7) as described above,
and we skip the details involved.

3* Applications to special polynomials• We begin by recalling
the generating function [8, p. 78, Eq. (3.2)]

(3.1) Σ Gίa)(x1/r, r, v, k)zn = (1 - kz)-«/k exp (px[l - (1 - kz)~r/k]) ,

where G{

n

a)(x, r, p, k) are the polynomials considered by Srivastava
and Singhal [8] in an attempt to present a unified study of the
various known generalizations of the classical Laguerre and Hermite
polynomials, the parameters α, p, k and r being arbitrary (with, of
course, k, r Φ 0).

Compare (1.6) and (3.1), and we have
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(3.2) A(z) = 1 , B{z) = (1 - kz)~1/k , C(z) = p[l - (1 - kz)~r/k] ,

and

fίa)(x) >n\Gί«\x1/r,r,p,k).

It follows from (1.7) that

Σ G£+λn)([x + nyψ\ r, p, k)tn

(3.3)
_ (1 - ζ)- / f e exp (px[l - (1 - ζ)~r/k])

1 - k'Kd - CΓΊλ - rpy(l - ζ)~^

where
(3.4) ζ - kt(l - ζ)~;/fc exp (py[l - (1 - ζ)""*]) .

Put ζ = w/(l + w), so that

(3.5) i _ ζ = _ ^ _ and - ί — - w .
1 + w 1 — ζ

Thus (3.3) can be put in its equivalent form:

ΣiGϊt+λ*K[x + ny]1/r,r,p,k)t*

^ ' ; - (1 + w)a/k exp (px[l - (1 + w)r/fe])
w)r/k]

where

(3.7) w = kt(l + ^)1 +" / f c exp (py[l - (1 + w;)r/fc]) .

Some special cases of (3.3) and (3.6) are worthy of mention.
Indeed, the polynomials G^ix, r, p, k) can be specialized to a number
of familiar classes of polynomials by appealing to the relationships
given, for example, by Srivastava and Singhal [8, p. 76]. First of
all we make use of a relationship with Laguerre polynomials, viz
[8, p. 76, Eq. (1.9)]

(3.8) Gr x ) (£, 1, 1, 1) = Ua\x) .

Thus, our formulas (3.3) and (3.6) with r = p = k = 1 reduce to the
corresponding generating functions for the Laguerre polynomials.
These generalizations of (1.1) were considered by Carlitz [3, p. 525].

Next we recall that [8, p. 76, Eq. (1.8)]

(3.9) GS-'Kx, 2, 1, 1) = tzψ-Hn{x) .
nϊ

By setting a = 1, λ = —1, r = 2, and p — k = 1, (3.3) thus reduces
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to

ny r = eXP (0,(̂  + 200-+ e n
ζ) 2

where

(3.11) ζ = i d + 0 exp (#(ζ2 + 2ζ)(l + ζ)~2) .

Similarly, (3.6) yields

(3.12) Σ Hn{VΈT^i

^=o n\ 1 — 2yw(l —

where

(3.13) w = ί exp
The generating functions (3.10) and (3.12) for Her mite polynomials

are believed to be new. Notice, however, that if in (3.1) (with
a = 0, r = 2, p = 1, and k = — 1) we replace # by #2, use the rela-
tionship [8, p. 76, Eq. (1.8)]

(3.14) G«\x, 2, 1, -1) = t^LHM ,

instead of (3.9), and then apply our theorem directly, we shall obtain
a known generating function for Hermite polynomials [3, p. 524,
Eq. (4.4)].

Yet another set of special cases of our generating functions (3.3)
and (3.6) would follow if we put p = r — 1 and apply the easily
verifiable relationship

(3.15) Giβ+1)(s, 1, 1, k) = fc r ; ( s ; fc) ,

where Yl(x\ k) are one class of the biorthogonal polynomials introduced
by Konhauser [4] for a > — 1 and k = 1, 2, 3,
From (3.3) we thus find that

(3.16)

where

(3.17)

Σ y

c

a

n

+ λ n ( χ +

_ ( 1 -

1 -

= ί ( l -

IVy y rVJO

f\ (Λ + l)/™ Λγγ\ ('Λ I

Λ-̂ α - crtλ

ζ)~ a /* exp (2/Γ1

[1 —

, — y

- ( i

(1 - ζ)-v*])

(i-O-v*l '

- CΓ7*]).

while (3.6) gives us
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Σ Yl+λn(x + ny; k)t*
y ' } „ (1 + wγ

a+1)/h exp

where

(3.19) w = t(l + w)1+λ/k exp (y[l - (1 + w)1/k]) .

For y = 0, the generating functions (3.16) and (3.18) reduce
essentially to a result due to Calvez et Genin [1, p. A41, Eq. (2)].
Furthermore, since

(3.20) Yi(x; 1) - Ua\x) ,

in their special cases when k — 1, (3.16) and (3.18) naturally yield
the aforementioned Carlitz's results involving Laguerre polynomials.

Finally, we give a simple application of our multiparameter gene-
rating function (1.11). Indeed, for the Lauricella polynomials (cf.
[5, p. 113])

where (α)Λ = Γ(α + ri)/Γ(α), it is readily observed that

Σ ^ [ , / i ,
(3.22) w=0 w!

- (1 - ^)"α Π

Compare (3.22) and (1.10) with r — s + 1, and we get

(3.23) A(z) - 1 , B&) = (1 - z)-1 , Bs+ι(z) =

«y = 0 , i = 1, ••-,*,

a n d

g<α.β»'...β9)(o9 .. .f o) > ( α ) . ^ [ - Λ , /9lf .., /9.; α; 7lf , 7.] .

It follows at once from (1.11) that

Σ (α + *;n)nF£[-n, β1 + μ.n, , /3. + μ.n; α + Xn; Ύlf , τ.]ίΣ

(3.24) (1 - ζ)"α Π ( l + i

2 Γ

Σ
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where

(3.25) C = *d - O"2 Π (l + ̂ Γξf^

Replacing a by a + 1 and ζ by ζ/(l + ζ), (3.24) may be rewritten
in its equivalent form:

i[-n, ft + ftn, , ft +

Xn

(3.26)
ζ ) β + 1

- ζ[λ - (l + ζ) Σ
where ζ is now given by

(3.27) ζ = ί( l + ζ ) ί + 1 Π (1 + T3 ζ ) " ^
3=1

For ft = = μs = 0, the multiparameter generating function
(3.26) is derivable also as a special case of a known result [7, p.
1080, Eq. (6)] involving the generalized Lauricella functions of several
variables.

A number of additional applications of our theorem can be given
by using some of the examples considered earlier by Carlitz [3].
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