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In this paper the notion of an unbounded multiplier on
a commutative Banach algebra is introduced. It is proven
that, as in the case of bounded multipliers, unbounded
multipliers also have Gelfand transforms. Some of the
properties of these transforms are then developed. The
final result of the paper is a new characterization of the
bounded multipliers on A where A is a Banach algebra of
the type described below.

1. Introduction. In general, by a multiplier on a commuta-
tive Banach algebra A one means a bounded linear operator T: A—
A such that T'(xy) = «T(y) for all x, yc A. There is an extensive
literature on the subject. One can consult, for example, [2] and
[3]. There does not seem to be, however, a systematic treatment
of unbounded multipliers although such multipliers occur quite
naturally. For example, consider the Banach algebra L!(— oo, o)
with the convolution product and define T by T(f) = f’, where the
domain =Z(T) of T is the set {f | f e L'(— o, =) and f is absolutely
continuous}. It is easy to check -that T(fg) = fT(g) almost every-
where for all fe L'(—o, ) and for all ge 2(T). However, T is
not bounded. (Although it is closed.)

As another example, take the Banach algebra C,(— o, =) of all
complex valued continuous functions on the real line which vanish
at infinity with T defined by T'(f)(x) = «f(x). The domain =2(T)
can be taken to be the set of all functions in Cy(— o, =) with
compact support. Finally, let {T,]|t = 0} be a semi-group of class
C, of bounded multipliers on the Banach algebra A. Then the
infinitesimal generator T, of {T,|¢ = 0} is an (in general) unbounded
multiplier, for if x ¢ <2(T,) and y e A then

Tey) = limF[T(y) — =]
= ylim 2{T(@) - o] = YT .

It is the purpose of this present paper to study some of the
properties of unbounded multipliers in the general setting of a
commutative Banach algebra. In particular, henceforth A always
denotes a regular, commutative semi-simple Banach algebra. We
also assume for the rest of the paper that A has a bounded
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approximate identity {e,} and that the Gelfand transform of each
{e.} has compact support. By 4(A) we shall mean the maximal ideal
space of A with the Gelfand topology and the symbol Z denotes the
Gelfand transform of xzc A.

2. Definitions and general properties.

DEFINITION 2.1. Let A be a Banach algebra. The function T
defined on the dense ideal &(T) C A is called a multiplier of A if
and only if for all xe &2(T) and all ye A4, T(xy) = yT(x).

The first theorem shows that, as in the bounded case, every
multiplier has a Gelfand transform.

THEOREM 2.1. Given a multiplier T on A there is a unique
complex valued continuous function T~ on 4(A) such that for all
T € 4(A) and all xe 2(T), T(x)"(t) = T (2)x" (7).

Proof. First of all observe that for each 7e4(A) there is an
xe Z(T) with ¢°(¢) = 0. For otherwise, if for some 7, 27(7,) =0
for all xe 2(T), then 2(T) is contained in some maximal ideal
which is a contradiction. Now if 7, € 4(4), choose € Z(T) so that
™ (z,) # 0 and define T (z,) by T (z,) = T(x)"(t,)/x"(z,). The func-
tion T is independent of z, for if ye 2(T') and y (7,) # 0, then
from T(xy) = 2T (y) = yT(x) follows 2" ()T ()" (z) = ¥y (¢)T(x)"(z) for
all 7€ 4(4), so that T(y) (z )|y (z,) = T(x)" (z,)/x"(z,). It is clear that
T" is continuous. To show uniqueness suppose there is a continuous
function ¢ on 4(4) such that T(x) () = ¢(z)x"(r) for all xe Z(T)
and all 7e€4(4). Then T (7)x"(z) = ¢(z)x"(z) for all x€ 2(T) and
7€ 4(A) and since for each z we can find an « such that #7(z) # 0,
it follows that T~ = ¢.

COROLLARY 2.1. A multiplier is linear on its domain.

Proof. Suppose z, ye Z(T) and let z = ax + By where o and
B are complex numbers. Then from z7(z) = ax” () + BY (7) we get
successively

T (0)2" () = aT (v)a"(7) + BT (D)y ()
T(2)"(z) = aT(@) () + BT(Y)"(2)
T(2)"(z) = (aT(x) + BT(¥))"(z)

T(z) = aT(x) + BT(W) ,

the last equation following from the semi-simplicity of the algebra.
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THEOREM 2.2. Ewery multiplier is closable.

Proof. Let T be a multiplier and assume {x,} is a sequence in
2(T) with lim 2,=0 and lim T'(x,)=v. Since T'(x,) — vy, T (7)x, (t) —
Yy~ (7). But T7(7)x, (r) — 0 also and thus %" (z) = 0 for all ze4(A)
so that y = 0.

THEOREM 2.3. If S and T are multipliers such that S (7) =
T (z) for all = and in addition S and T are closed then S = T.

Proof. The algebra has a bounded approximate identity {e.}.
Now for each a and any e > 0 there is an e,e 2(S) such that
l|e. — ek|l <e. Thus f{e,} is an approximate identity in <=2(S).
Similarly we can construct an approximate identity e in =(T).
Now letting f, = e,el, we have that f.e 2(S)N 2(T) and since
S7(z) = T™(z) we get S (z)en(t)el(z) = T (7)el(r)ey(z) so that S(f,)=
T(f,). Now let fe 2(S). Then ff,— f and S(ff.) = f.S(f) — S(f).
But S(ff.) = fS(f.) = fT(f.) so that T(ff.) — S(f) also. Therefore,
since T is closed, fe 2(T) and T(f) = S(f). By reversing the roles
of S and T we get the assertion of the theorem.

COROLLARY 2.2. If S and T are multipliers such that S™=T",
then S and T have the same closure.

Proof. If S, and T, denote the closures of S and T respec-
tively, then S,”" =S8~ and T,”" = T". Therefore S,” = T,” so that
by the previous theorem S, = T,.

The previous theorem and corollary provide us in an obvious
way with a means to define an equivalence relation on the set of
multipliers. We say that S is equivalent to T, S ~ T, if and only
if S© = T". Thus the set of multipliers can be split up into equiv-
alence classes such that all multipliers in the same class have the
same closure and the same transform.

The next theorem concerns inverses of multipliers.

THEOREM 2.4. Let T be a multiplier. Then T exists and 1is
a multiplier if and only i1f T  mever vanishes.

Proof. Assume T exists as a multiplier. Then for each
xe (T there is a ze Z(T) such that T7()z"(z) = " (7). If
T (z,) = 0 for some 7, then x"(z,) = 0 for all xe¢ 2 (T*) which con-
tradictics the fact that &2 (T™) is dense. On the other hand assume
that 7" never vanishes. Then the set I={yed|xe 2 (T) with
T™(7)x™ () = y~(r)} is an ideal in A. If I is not dense, then its
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closure is a closed proper ideal and hence contained in a maximal
ideal. Therefore, there is a 7, such that ¥°(z,) = 0 for all y eI and
this in turn implies T"(zy)x"(z,) = 0 for all z € 2(T). Thus 2" (z,)=0
for all x € &(T) which is a contradiction.

It is possible to characterize those functions on 4(A) which are
transforms of multipliers. This is done in the following theorem.

THEOREM 2.5. In order that T~ be the transform of a multiplier
it is mecessary and sufficient that T~ belong locally to A~ at each
point of 4(4).

Proof. If T belongs locally to A~ at each point of 4(A), then
T e,” belongs locally to A at each point 4(A4) U {}. By a theorem
due to F. Birtel, ([1], p. 818), this implies that T ¢,” belongs to A".
Therefore, for any xc A, 2" T"¢,” belongs to A~ and we define
T(xe,) = Y. where y,” = x"T"e,”. If we then let & (T) be {xe,|x ¢
A}, we have T(zxe,) =y, where y,” = 2 2" T7¢,”. But 2"T7¢,” =
T(xe,)” and so y, = zT(xe,). Thus T determines a multiplier. Con-
versely, if T is the transform of a multiplier and p e 4(4), there
exists an x€ 2 (T) such that 2”(z) +# 0 on some compact neighbor-
hood V of p. There is then a y e A such that ¥~ (r) = 1/2"(z) for
all ze V so that " (z)y"(z) =1 on V. But zye 2(T), so that if
we let 2 = T'(xy), then z7(zr) = T"(v)x"(7)y"(r) for all € 4(A) and T~
belongs locally to A™ at p.

COROLLARY 2.3. If T s the transform of a multiplier, then
T" is the transform of a bounded multiplier if and only if |p(T(x))|/
l|px|] < M for all pe A* and all xe 2(T). (Here A* is the dual
of A and px is the functional defined on A by px(y) = p(xy) for all
yed.)

Proof. The proof follows immediately by combining the above
theorem and the following theorem proved in [4].

THEOREM. Let F be o complex wvalued function on 4(A). In
order that F determine a bounded multiplier of A, it is mnmecessary
and sufficient that F belongs locally to 4(A) at each point of 4(A)
and that |p(F@)|/||px|| < M, for all pe A* and for all xeA,. (A,
is the set {x| F% = § for some yeA.)

3. Further results. In Theorem 2.5 we gave a necessary and
sufficient condition that a function on 4(A4) be the transform of a
multiplier. The next theorem gives a different necessary and suffi-
cient condition that a function be the transform of a multiplier.
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This identity, as it turns out, allows us to characterize those func-
tions which are transforms of bounded -multipliers on the Banach
algebra A.

TueoREM 3.1. The function X\ belongs locally to A~ at each
point of 4(A) if and only if there is an approximate identity {e,}
whose Gelfand transforms have compact support such that for each
a, e, (T)NT) = [, (7) for some f, € A.

Proof. By referring to the proof of Theorem 2.5 one can easily
see that if A belongs locally to A~ then A\(7)e, (z) belongs locally to
A,

Conversely, given any t¢,€ 4(A) there exists a neighborhood V
of 7, such that e;(z) # 0 for some @, and all z¢€ V. Thus there is
a g. such that g, (7) = l/ez(z) for all ze V. But there is an f,,
such that e (t)M7) = fo(r) for some 7. Hence, for ¢ V we have
Mt) = fa(r)gs(7) so that N belongs locally to A”.

In Corollary 2.3 necessary and sufficient conditions were given
in order that )\ be the transform of a bounded multiplier. However,
for specific algebras the inequality in that corollary may be hard
to check. The following theorem gives another necessary and suffi-
cient condition that \ be the transform of a bounded multiplier.

THEOREM 3.2. In order that the function N on 4(A) be the
transform of a bounded multiplier it is mnecessary and sufficient
that ne, = g, where g.€ A, and there exists M > 0 such that ||g.]|<
M for all «.

Proof. The necessity is clear. Assume therefore, that \e, =g,
where g.€ A and |lg.|| £ M for all . Define T(x) = y where 4y~ =
Me© oand Z(T) ={xeA|xz"eA”}. It is easy to see that =2(T) is
an ideal and, since {e,} is contained in & (T), it is dense. It follows
directly from the definition that T is a multiplier. Now let fc
Z(T). Then T(e)f = T(e.f) = T(fle. and T(f)e,— T(f). There-
fore ||T(f)|l = sup, [[T(e)fIl = M| f1].
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