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The aim of this paper is to provide full proofs of results announced
in [2]. Some theorems are proved under weaker assumptions. The
results lead to a decomposition theorem for actions of SL(2) similar
to that proved in [1] for torus actions. However even in this case
of SL(2) and in a greater extent in the case of actions of arbitrary
semisimple groups the results are not so full and many questions
are left open. Some of them are mentioned in the paper.

All considered algebraic varieties and morphisms are assumed to
be defined over an algebraically closed field & (of any characteristic).
Let G denote a connected semisimple algebraic group. Let a: G x
X — X Dbe an action of G on a complete algebraic variety X. For
g€G and x ¢ X we shall write g(x) or gz instead of a(g, ). The
subvariety of fixed points of the action is denoted by X% The orbit
Gx of xe X is said to be closed if it is closed in X. A closed orbit
is said to be nontrivial if it is not composed of one point.

THEOREM 1. Let G, X, « be as above. Assume that there exists
a dense orbit in X. Then X is finite (but possibly empty) and if
the action of G on X is mot trivial then X contains a nontrivial
closed orbit.

Proof. Let us assume first that X is normal. Then it follows
from Lemma 8 of [9] that X can be covered by open quasi-projec-
tive G-invariant subvarieties. Since X is quasi-compact, X ean be
covered by a finite number of these and in order to prove that X¢
is finite it is enough to prove that the result is true when X is
quasi-projective. Let X be quasi-projective. Then X can be imbedded
in a G-invariant way into some projective space P" equipped with
a (linear) action of G. We are going to fix such an imbedding and
consider X as a locally-closed subset of P*. Let ae X°c P*. It is
sufficient to prove that there is an open G-invariant neighborhood
U of a in X such that Un XY = {a}. It follows from Mumford
conjecture (proved by Habush [5]) that there exists a G-invariant
hypersurface V< P" such that a¢ V. The closure ¥ of X in P” is
closed and the difference X — V is affine. Since any two closed G-
invariant orbits in X —V have different images in the quotient
(X — V)/G (see [3]) and since X — V contains a dense orbit, we have
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(X —V)¥ ={a}. Thus we may take U= X —V and the proof of
the first part of the theorem in the case where X is normal is
complete.

Now we shall prove the second part of the theorem in the
normal case. Assume that the action is not trivial. Let T X be
a non-trivial orbit of the smallest dimension. Then 7'U X¢ is closed
and hence complete. Let us assume that 7T is not closed. Then
there exists a € TN X% Let U be a quasi-affine G-invariant neigh-
borhood of a found as in the first part of the proof. Then TCU
and hence T is quasi-affine. But the difference 7 — T is a finite
subset of X¢ hence dim T = dim 7' =1 (if a completion of a quasi-
affine variety is finite then the variety is of dimension one). But
any one-dimensional orbit of a semisimple group is isomorphic to
P! and this gives a contradiction, since we have assumed that the
orbit is not closed. Thus the theorem is proved in the normal case.

In the general case it is enough to consider the normalization
7: X - X of X with the induced action of G on X. Since 7(X¢) = X¢
and X¢ is finite (because X is normal and we may apply the theorem
in this case), X¢ is finite. Since X contains a nontrivial closed orbit,
X also contains such an orbit.

COROLLARY 2. If the action of G on a complete variety X has
no nontrivial closed orbit, then the action is trivial.

Theorem 1 shows the importance of closed orbits in the theory
of actions of semisimple groups on complete varieties. It suggests
that in this theory closed orbits (not only fixed points) play a role
analogous to that of fixed points in the theory of actions of multi-
plicative or additive groups. It can be also noticed here that in the
affine case, i.e., if an action of G on an affine veriety Y is given,
then Y contains exactly one closed orbit whenever it contains a
dense orbit (as follows easily from the Mumford conjecture). In the
complete case the analogous result is not valid. Moreover the closure
of an orbit may contain an infinite number of closed orbit (see [8],
p. 799).

THEOREM 3. Suppose moreover that the variety X is projective
and assume that X contains a demse orbit. Then X¢ contains at

most one fixed point.

Proof. Assume that X is normal. Then there exists a G-
invariant imbedding X< P", where 7 is an integer and P" is
equipped with a (linear) action of G. Let this action be given by
g — A(g) where A(g) = (a;;(9)) is a (» + 1) X (n + 1) matrix, and
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,5=0,---,n If |a, ---, a,]€ P* is a fixed point of the action
ay
then, for any geG, A(9)| | = M9la, - -, a,] for some Mg) €k and
@y,

hence AM(g) = 1, since G has no nontrivial characters. We may assume
that the vector subspace of A"+ composed of proper vectors of A(g)
for all geG is span by ¢ =[1,0,---,0], ¢, =1[0,1,0, ---,0], ---,
e, =10,---,0,1,0, ---,0]. Assume that [a, ---, a,] and [a;, ---, a,] €
X%c P*. It follows from the above that a,:y=--- =a, =0,
pyg = +-+ = a, = 0. It follows from the Mumford conjecture that
there are homogeneous G-invariant polynomials F, F' ek[X, ---, X,]
such that Ffa, ---, a,]#0, F'(a;, ---, a,) # 0. Of course, we may
assume that deg F' = deg F'. For ¢ck, F + ¢F' is a homogeneous
G-invariant polynomial and for some cck, (F + ¢F')(a,, ---, a,) = 0,
(F + aF")al, -+, a,) + 0. Hence both [a, ---, a,] and [a;, ---, ai]
belong to an open affine G-invariant subvariety of X. This contradicts
existence of exactly one closed orbit in the affine case. Hence
Theorem 3 is proved for X normal. If X is not normal then let us
consider the normalization 7: X — X of X. Since n(X?% = X¢, and
X“ contains at most one point, so does X¢.

It would be interesting to know if Theorem 3 holds under weaker
assumption that X is complete.

Let X* be the union of all closed orbits of the action of G on
X.

PROPOSITION 4. X™* is a closed subset of X.

Proof. Let us fixed a Borel subgroup B G. If a€ X belongs
to a closed orbit, then the isotropy subgroup G, <G contains a con-
jugate of B, i.e., the orbit of a contains a point with the isotropy
group containing B. The set X° is closed hence complete. Let 5:
G/B x X? — X be a map defined by B(gB, a) = g(a). It is easy to
see that the map is a well defined morphism and it follows from
the above that 3(G/B x X*) = X*. But since G/B x X* is complete,
its image is also complete hence closed in X.

THEOREM 5. X9 4s a union of some connected components of
X*,

Proof. Assume that X is normal. Let ae X® Then there
exists an open G-invariant quasi-projective neighborhood U of a in
X (Lemma 8 in [9]) and there is a G-invariant imbedding U <> P".
It follows from the Mumford conjecture that there exists a quasi-
affine G-invariant open neighborhood of ¢ in X. Therefore the only
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closed orbits of G in U are trivial. Hence X¢is open in X*. Since
X¢is also closed, the theorem is proved in case where X is normal.
In the general case one uses the already proved result for the
normalization of X.

In the sequel we are going to assume that there exists an
open covering {U;} =1, ---, k) of X such that for each ¢ there
exists a G-invariant embedding U, = P", where # is an integer.
It is known that if X is normal then it has this property. Let
T be a maximal torus of G and let G,,<> T be a one-dimensional
subtorus satisfying the condition: X* = X% (see [4] for existence
and other pertinent results). Let X{ be the irreducible (and con-
nected) component of X7 corresponding to the “big” cell in the
decomposition of X determined by the action of G,. Let

X, = U gm .
GG

THEOREM 6. Let G = SL(2). Then X, is a connected and ir-

reducible component of X*.

Proof. First, we prove that X{ C X* Let aeX, . Assume
that a¢ X*. Then the isotropy group of a is either G, or the
normalizer of G, in G. The induced action of G on the tangent
space V at a to the orbit of G is linear and when diagonalized then
it is given by t(x,, x,) = (tx, t',), for t G, and (x, x,)e V. Hence
a does not belong to a “big” cell. Thus X; < X*.

Now, the only parabolic subgroups of SL(2) are Borel subgroups
and SL(2). Hence, there are only two types of closed orbits: fixed
points and SL(2)/B ~ P*. Let us assume that the action is nontrivial.
Then X, N X% = . (If ac X® then the induced action of G on the
tangent space T, is either trivial or the induced action of G, =G
on T,, contains vectors of both positive and negative weights.)
Therefore X, X* — X% Since X, is irreducible, X, is contained in
a connected component of X*.

Denote the component by Z. Fix a torus Gm = TC G and let
B, B, be the Borel subgroups containing 7. Then X§ U Z”"'U Z": (since
the isotopy group of any point from X, is parabolic and hence
contains either B, or B;). But Xj is connected and Z*:N Z"2=0 (since
ZP N Z*=7%). Thuseither X; CZ” or X} CZ”. We may assume that
X5 cZ”. But ZmcZ"c X", and X§  is connected component of X7,
hence X¢ is a connected component of Z”. Orbit of any point form
Z contains a point from Z”. Hence GZ* = Z. Moreover G/B, con-
tains exactly one fixed point for B, and any orbit of a point from
Z is isomorphic to G/B,. Therefore there exists exactly one con-



ON ACTION OF SL(2) ON COMPLETE ALGEBRAIC VARIETIES 57

nected component of Z%, i.e., Z* is connected and we have proved
that Z"t = G,,. Hence Z™ is irreducible and therefore Z is irreduci-
ble. Moreover we have obtained that X, =GX{ =Z and X, is a
connected and irreducible component of X.

COROLLARY 7. If the action is not trivial and ch(k) = 0, then
X, is isomorphic to X, X P

Let X° be the subset of X composed of all points xe X such
that Ga N X, = @.

THEOREM 8. X° coinsides with the union of all “big” cells cor-
responding to actions of maximal subtori induced by the given
action of G on X. Hence X° is open. In fact X° is the smallest
G-invariant neighborhood of X,.

Proof. Let U be the union of all “big” cells corresponding to
actions of maximal subtori. Then U < X°, U is open and G-invariant.
On the other hand, X° is contained in any open G-invariant neigh-
borhood of X,. Thus U = X° and the theorem is proved.

COROLLARY 9. If ch(k) =0 and X, is rational, then X is ra-
tional. In particular, of the number of closed orbits in X is finite,
then X s rational.

Proof. If the action is trivial, then the corollary is also trivial.
Suppose that the action is nontrivial. If X, is rational then, X¢ is
unirational and X; X P'is rational (Corollary 7). But X contains
Xj x A* (where k is a positive integer) as an open subset. Thus
X is rational.

DEFINITION 10. Let G = SL(2) and X* = X* U --- U X* be the
decomposition of X* into connected components. Let

X, ={reX; @)OCXL'*} .

The decomposition {X,} of X will be called the decomposition
determined by the action of G on X. Subvarieties X, fors=1,---,7,
will be called cells of the decomposition. Exaectly one cell of the
decomposition is open in X. This cell corresponds to X# = X, and
is equal to X°. It will be called the “big” cell of the decomposition.

THEOREM 11. () X =Ui., X, X.NnX; =@ for i # j.
(b) X, 1s locally closed.
(e) X;DXF and X, is the smallest G-invariant neighborhood
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of X¥ in X,.
Moreover the decomposition X = 7., X, described above .is the
only decomposition of X satisfying (c).

The theorem follows from Theorem 8 by induction on dim X.

ExamMPLE. Assume that k is of characteristic 0. Let an action
of SL(2) on P" be given. Then the action is induced by a linear
representation of SL(2) on A" and the representation can be split
into a direct sum V, V. P --- P V,, where m is an integer and
V, for i =0, ---, m) is a direct sum of irreducible representations
of the dominant weight 7. It is easy to check that in this case
(P = P* — Proj (V,® --- P V,_.) and that the cells of the decom-
position of P” are of the form Proj(V.@P:--@BV,)—Proj(V,Pp---DBV,._.).
Therefore in some sense the decomposition of X described in Defini-
tion 10 and Theorem 11 can be considered as a generalization of the
splitting of linear representations into a direct sum of sums of
isomorphie irreducible representations.
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