Pacific Journal of

Mathematics

A COHOMOLOGICAL INTERPRETATION OF BRAUER
GROUPS OF RINGS




PACIFIC JOURNAL OF MATHEMATICS
Vol. 86, No. 1, 1980

A COHOMOLOGICAL INTERPRETATION OF
BRAUER GROUPS OF RINGS

RaymonD T. HOOBLER

Dedicated to Gerhard Hochschild on the occasion of his 65th birthday

Quillen’s proof of the Serre conjecture introduced a new tool for
passing from local to global results on affine schemes. We use this
to prove the theorem below characterizing the image of the injection
1: Br(X) — H*(X,, G,) when X = Spec 4, is a regular scheme. A
result of M. Artin then allows us to conclude that Br(X) = H¥X,,, G,)
if X = Spec A is a smooth, affine scheme over a field. For such rings,
this proves the Auslander Goldman conjecture [2], Br(4) = N Br(4,),
pe P(A), the set of height one primes of A.

We begin with following theorem.

THEOREM. Let X = Spec A be a regular scheme. If ¢ce HY(X,, G.,)
and ¢, = i([4,]) in H*(Spec(4, )., G.) for all closed points y € X, then
¢ = i([4]).

Proof. If feA, let ¢; denote the restriction of ¢ to
H*Spec(A)e, Gu) -

Let S={feA|e; =i({4]) for some Azumaya algebra 4 over A;}.
We will show that S is an ideal. Then S = A since the hypothesis
on ¢ prevents S from being contained in any maximal ideal of A.

Suppose f, ;€S and feAf, + Af,, Then Spec(A;) = D;, U Dy,
where Dy, = Spec(A;;,). Hence we may assume A; = A and Spec(4)
is covered by D; U Dy, Let 4, 4, be Azumaya algebras over 4,, 4,
with ([4,]) = ¢;, and i([4,]) = ¢s,. Since ¢ is injective, [4,,] = [4:1];
that is, there are locally free coherent A, , modules P, P, such that
47, Q End(P,) = 4,5, ® End(P,). Since K°(A;)— K'(Ayy,) is onto (A
is regular) [3] and we may assume the rank of P, is large, there
are locally free coherent A, modules @, such that @, = P, [3,
Chapter IX, 4.1]. Replacing 4, by 4,® End(Q,), we may assume
that 4,;, = 4,;. Using this patching isomorphism we produce an
algebra A with 4, = 4, 4;, = 4,. Since H(X,,, G,) — H¥Dy,,., G,) is
a monomorphism, ¢ = i([4]).

COROLLARY 1. Let X = Spec(A) be a smooth k scheme where k
1s a field. Then Br(X) = H¥X,, Gn.)-

Proof. Since X is regular, H(X,, G,) is torsion [4]. If ce
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H¥X,, &,) has order » and = is relatively prime to the characteristic
of k, then the Kummer sequence

0 j7n G, Gn 0

shows that ¢ is in the image of H*X,, t,). Now the existence of
good neighborhoods [1] on X = X @, k, k = algebraic closure of k,
shows that elements of H*X,,, £t.) are locolly isotrivial, i.e., there is
a Zariski covering {U,} of X and a finite, etale covering space V,—
U, which splits elements of H¥X,,, ¢t.). Consequently X has a Zariski
open covering {U,} and finite, flat coverings =, W, —U, such that
nx(cly,) = 0. Hence by the criterion in [6], ¢, is in the image of
Br(U,) and so by the theorem ¢ is in the image of Br(X). If ¢ has
order p", p = chark, then we know that F§(c) = 0 where F'y is the
Frobenius map. Since it defines a finite flat covering of X, the same
criterion shows that ¢ is in the image of Br(X) (see [7] where this
argument is given in more detail.).

COROLLARY 2._ Let A be an algebra of finite type over a field
I such that AQ k is regular, i.e., Spec A 1is smooth over k. Then

Br(A) = 0 Br(A), pe P(A) = {p/height p = 1} .

Proof. We will use induetion on # =dim A. If n =0, 1, or 2,
the result was proven in [2, 4]. Since A is a regular ring, Br(4) cn
Br(4,), e P(A). Hence the argument of the theorem shows that

S = {feA/Br(As) = NBr(4,), pe P(4,)}

is an ideal in A and so is either A or is contained in a maximal
ideal of A. Hence we may assume A is a local ring of dimension
greater than 2.

Let ce N Br(4,), pe P(A), and X = Spec A and U be the punctured
spectrum. Since Br(A,) = H*Spec(A,)., G.), there is a cohomology
class ¢, € N H*Spec(4,).., G..) & H*(Spec(K),;, G.), pe P(4), with ¢, =
i(¢) where K is the quotient field of A. Now the Mayer-Vietoris
sequence, which may be viewed as the Cech spectral sequence for
the covering {U,, U,} of U, U U, and the induction hypothesis show
that there is a ¢’ € HX(U,,, G,) whose restriction to H?*(Spec(4.., G..)
is i(¢). Suppose ¢’ is of order n where (n, chark) = 1. Then the
Kummer sequence shows that there is a cohomology class in H*(U,,, ¢,
whose image in H*U,, G,) is ¢’. But HXX,, . = H¥U,, tt.) by
relative cohomological purity [1, Expose XVI] and so there is a
cohomology class ¢” in HYX,,, G,.) whose restriction to U is ¢’. By
the first corollary ¢” is in the image of Br(X) as desired.

If » = p™, p = char(k), the same argument will work if we can
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show that ¢’ is in the image of H*X,,, G,). We will then be done
since ¢’ = ¢} + ¢, where the order of ¢; = p™ and the order of ¢ is
prime to p. The obstruction to ¢’ being in the image of H¥X,, G,)
lies in the local cohomology group H3(X,, G,) where P is the closed
point of X. Moreover since F7.(c') = p™¢’ =0 where Fy: X — X is
the purely inseparable Galois covering defined by the Frobenius map,
the obstruction lies in the kernel of F7": Hi(X,, G,) — H} X, G,).
We have an exact sequence of sheaves on X,, [7]

0— G, 15 F,.G, P QL 0

where 273 and Q% are free A-modules (A is smooth and local) whose
definition is unimportant. If C denotes the cokernel of j, then
HiX,, C) is trapped between HiX,, 2%) and Hi(X,, Z3). Since
2% and 2! are coherent sheaves, their local cohomology in the
etale and Zariski topology coincide and hence vanish because
H}, (Spec(A),A) = 0 if A is regular and ¢ < dim A. Since dim 4 > 2,
we conclude that

Fj\k: H}’(Xet) Gm) I H;’(Xetv FX*Gm) = H;(Xety Gm)

is injective and so ¢’ is in the image of H*X,,, G.).

COROLLARY 3. Let w: X —Y be a proper, smooth morphism of
fibre dimension one where X is a smooth scheme over a field. Then
RrRz.G, =0.

Proof. We may assume that Y is a strictly local k-scheme, k a
field, and we must show that H*X,, G,) = 0. Since 7 has fibre
dimension one and is proper, X is a union of two affine schemes
which are limits of smooth k-schemes. Consequently H*X,,, G,) =
Br(X). But Br(z X (y)) = 0 by Tsen’s theorem. Thus Artin approxi-
mation may be used as in [5] to lift a trivialization of an Azumaya
algebra on the fibre to a trivialization of the algebra on X.
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