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The main result of this paper is the following:

TarorEM: Let 77 be a universal extension of the dif-
ferential field & of characteristic zero and let & be a
strongly normal extemsion of & in %. Then % is a
universal extension of <.

Introduction. We deal with differential fields, always of
characteristic zero, relative to a nonempty finite set of commuting
derivation operators. By an extension of a differential field, we al-
ways mean a differential field extension. An extension &' of a
differential field & is said to be finitely generated if &' has a
finite subset @ such that .7 ' = . (@) — the smallest extension of &
in .# ' that contains @.

Let 7 Dbe a differential field. Recall that an extension % of
# 1s called universal if, for any finitely generated extension .7,
of & in % and any finitely generated extension < of ., not
necessarily in 2/, ¢ can be embedded in % over .&, i.e., there
exists an extension of &, in % that is isomorphic (in the sense of
differential fields) to ©° over .&7,. Such a universal extension of .&~
always exists ([2] p. 132, Th. 2). It is not unique, but if % and
7~ are two universal extensions of . then there exist universal
extensions 7/’ and 7' of & lying in % and ¥, respectively, such
that %' is isomorphic to 7 over .% ([2] p. 135, Exerc. 7).

Let ‘Z/ be a universal extension of the differential field .# and let
< be an extension of . in Z/. Under favorable conditions, Z is then
a universal extension of &7, too. For example, this is the case when
< is finitely generated over % ([2] p. 133, Prop. 4), and also when
< is algebraic over % ([2] p. 134, Exerc. 1). The main purpose of
the present note is to point out another such favorable condition.
We shall show (§1) that when % is a strongly normal extension of
7, in the general sense of Kovacic [4] (i.e., not necessarily finitely
generated), then % is universal over %°. This result shows that, in
the study of strongly normal extensions, it is not necessary to replace
7 by a larger universal extension of & (see Kovacic [4] p. 518).

Every strongly normal extension of % in % is embeddable
over . in a constrained closure of % in 2 ([3] p. 162, Th. 8 or
Blum [1] p. 42 (15)) and hence, in particular, is constrained over &~
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([3] p. 148, Th. 1). It is tempting to conjecture that the above
result generalizes to constrained extensions of & in %. We shall
show (§2) by a counterexample that % can fail to be universal over
a constrained closure of % in #.

1. Strongly normal extensions. Recall ([2] p. 393), for a
finitely generated extension % of & 1in a given universal extension
Z of &, that & is called strongly normal over .&# if every iso-
morphism ¢ over & of & onto an extension of & in % is strong,
i.e., has the property that gc = ¢ for every constant ¢ in & and
o =0% - %, where 5 denotes the field of constants of .
This definition is apparently a relative one, depending on the universal
extension % of & in which & is embedded. It is eary to see,
however, that if & is strongly normal over & relative to one %
then & is strongly normal over # relative to every %, so that
the notion of strongly normal finitely generated extension is an
absolute one. When % is not necessarily finitely generated over
&, & is said, following Kovacic [4] p. 518, to be strongly normal
over % if & is the union of strongly normal finitely generated
extensions. Hence, also this more general notion is absolute.

It follows from [2] pp. 402-403, Th. 5, and the definition that
if & is any strongly normal extension of &% and & is any exten-
sion of &, both contained in an extension of & having the same
field of constants as ., then % is a strongly normal extension
of &, and & and & are linearly disjoint over & N &.

We now prove the main theorem of this paper which was stated
in the opening paragraph.

Proof. (a) We must show that if &, is a finitely generated
extension of & in % and £ is any finitely generated extension of
<, not necessarily in %/, then there exists an embedding 2% — &
over &,. As before, denote the field of constants of Z by .o7; and
put & = F N, =2, N.%. Then & = & N.2~ ([2] p. 393,
Prop. 9), &, is a finitely generated field extension of & ([2] p. 113,
Cor. 1 to Prop. 14), % is a universal extension of %7, and £%,
is a strongly normal extension of %7 ([2] p. 396, Th. 2). Thus, we
may replace (7, &, &, 5F) by (F&,, €&, &, &%), i.e.,, we may
suppose that &, &, &, have the same field of constants &

(b) That being the case, fix a finite family B8 of generators of
<, over &. Then % is a universal extension of .#<B) and &, =
& #{B> is a strongly normal extension of #{g8). Thus, we may
replace (F, &, &, o) by (9B, &, &, 5), i.e., we may suppose
that &, = £.
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(¢) That being the case, let <7 denote the field of constants of
. Then <& is a finitely generated field extension of %, so that
there exists an isomorphism & ~ 2’ over & with &’ a field ex-
tension of %« in 7 Because ¥ and <& are linearly disjoint over
7" (]2] p. 87, Cor. 1 to Th. 1), and likewise & and <&’, this ecan be
extended to an isomorphism < ~ <7’ over Z. This can in turn
be extended to an isomorphism 7 ~ .7”', where 7' is a finitely
generated extension of €<’ not necessarily in 4. Now, % is a
universal extension of 7 &’', £ </’ is a strongly normal extension
of ' in «, and 27" is a finitely generated extension of &<’
with field of constants &’. An embedding 57’ > % over &<’
would, when composed with the isomorphism <7  ~ .2 over &,
vield an embedding 2 — % over 2. Thus, we may replace
(o, 2, %) by (', ' "), i.e., we may suppose that the
field of constants of 27 is &

(d) That being the case, fix a finite family a of generators of
the extension .2#” of ¢, and put & = .o<a). Then T NZ is a
finitely generated extension of % (|2] p. 112, Prop. 14), so that Z
is universal over 7' N %. Thus, we may replace (&, <, .7, &) by
(2 N%, <, o, &), i.e., we may suppose that & N & = 7 Since
7 is strongly normal over .57, then the differential field o7 = <&
is strongly normal over & and < and & are linearly disjoint over
2

(e) Because 7 is universal over ../, there exists an isomorphism
¢ ~ &, over .» with &, an extension of & in 4, and this
isomorphism can be extended to an isomorphism o: % ~ ., where
s, is an extension of & (and of &,) not necessarily in «. Put
<, =0%. Then ;= <,%, this differential field is a strongly
normal extension of %,, and <, and %, are linearly disjoint over
. Evidently 4/ is universal over &, (because &, is finitely
generated over &), and hence the strongly normal extension &,
of 7, can be embedded in % over %, i.e., there exists an isomor-
phism o, 2,%, ~ 7.%, over &, with 0,2, = &,C «. The field of
constants of ¥4, like those of 2] = &, and 2 = &, is &,
and hence <,%, and .2¥" are linearly disjoint cover ~". Therefore
&%, and <, 77 are linearly disjoint over &7,. But by (d), & and &
are linearly disjoint over &7, so that 25, and <, are, too, and hence alsc
%, and &,. Therefore &, and <, are linearly disjoint over .o
But & is strongly normal over .7, so that & Coo0% -.70 = &, 07
Hence ¢, and < are linearly disjoint over .57 Therefore, id. and
the isomorphism 7.~ % (restriction of (0,00)™") extend to an iso-
morphism : &, %, ~ 7 ¢,. The composite isomorphism zo0g,00 is an
embedding of 27 into % over <.
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2. A counterexample for constrained extensions. Recall that
an extension %7 of a differential field is said to be constrained (3]
p. 144) if every finite family of elements of < is constrained over
& in the sense of [2] p. 142, that a differential field is said to be
constrainedly closed ([3] p. 145) if it has no constrained extension
other than itself, and that 2 is said to be a constrained closure of
5 ([3] p. 147) if = is constrainedly closed and is embeddable over
closed # in every constrainedly extension of .¢*. A constrained
closure of &% always exists, and it is a constrained extension of .7~

We are going to exhibit an ordinary differential field &7, a uni-
versal extension % of &, and an extension < of & in % such
that ©° iIs a constrained closure of % and % is not universal over

Let %" be any denumerable field of characteristic zero and put
7 =% (x) = the field of rational fractions over ~ in an indeterminate
x; 5 has a unique structure of ordinary differential field with field
of constants 4" in which the derivative of » is 1. By [3] p. 149,
Prop. 4, we may fix a denumerable universal extension % of .7
By |3] p. 146, Cor. 1 to Prop. 3, 2 is constrainedly closed.

The set of solutions in . different from 0 and 1 of the dif-
ferential equation

Y=y -y
is denumerable and hence can be arranged in a sequence

7707 7717 W;’r et

By [3] §8, this set is infinite and is an independent set of conjugates
over %, and .#{n,, N, M., -+ -» I8 constrained over .o% (see |3] p. 144,
Prop. 1). Because 4/ is constrainedly closed, <%, %, %, --+) has
a constrained closure ¢ in . The differential ideal [y’ — ¥* + ¥
of the differential polynomial algebra < {y} is evidently prime and
does not have a generic zero in 4/ (because all its zeros in % are
in 77). Therefore, 7 is not universal over <. (The same argu-
ment shows that 77 is even not universal over . %<7, 7, 0, --->.) We
are going to show that < is a constrained closure of ..

By |3] p. 144, Prop. 2(a), % is constrained over .&. Let %~
be any denumerable constrained closure of .o (e.g., any constrained
closure of &% in %). The set of solutions in % of the above
differential equation can be arranged in a sequence

o - o

S0 w1y B2y T

As before, this set is infinite and is an independent set of conjugates
over .. Therefore, there exists an isomorphism
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Now, X, &, &, --+» is normal over % in 7 (see [3] §6 p. 1563).
Hence, by [3] p. 159, Cor. 1 to Th. 2, 27 is a constrained closure
of #X, ¢, L, --+>. Therefore, by [3] p. 158, Th. 2(b), ® can be
extended to an isomorphism ¥ ~ 57, so that & is a constrained
closure of .o7.
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