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The main result of this paper is the following:

THEOREM: Let ^ be a universal extension of the dif-

ferential field ^~ of characteristic zero and let ^ be a
strongly normal extension of ^~ in ^1 Then ^ is a
universal extension of &.

Introduction. We deal with differential fields, always of
characteristic zero, relative to a nonempty finite set of commuting
derivation operators. By an extension of a differential field, we al-
ways mean a differential field extension. An extension ^~' of a
differential field J^" is said to be finitely generated if J^"' has a
finite subset Φ such that ά?~f = J^(Φ) — the smallest extension of ^
in J ^ ' that contains Φ.

Let J^ be a differential field. Recall that an extension ^/ of
j / ' ~ is called universal if, for any finitely generated extension ^ 7
of J^ in fs and any finitely generated extension 2^ of ^ 7 not
necessarily in <?/, Ϋ7 can be embedded in ^ over <#7> i e > there
exists an extension of J^7 in <%έ that is isomorphic (in the sense of
differential fields) to 2Γ over _^7. Such a universal extension of J^
always exists ([2] p. 132, Th. 2). It is not unique, but if ^ and
T' are two universal extensions of j77 then there exist universal
extensions ^ ' and 3^' of J^7 lying in ^ and % respectively, such
that <2έ' is isomorphic to T' over ^ ([2] p. 135, Exerc. 7).

Let 2έ be a universal extension of the differential field ά^ and let
gf be an extension of ^ " in ^ . Under favorable conditions, f/ is then
a universal extension of gf, too. For example, this is the case when
gr is finitely generated over J?r ([2] p. 133, Prop. 4), and also when
& is algebraic over ά^ ([2] p. 134, Exerc. 1). The main purpose of
the present note is to point out another such favorable condition.
We shall show (§1) that when g^ is a strongly normal extension of
j^7 in the general sense of Kovacic [4] (i.e., not necessarily finitely
generated), then % is universal over g7. This result shows that, in
the study of strongly normal extensions, it is not necessary to replace
Ή/ by a larger universal extension of ^ (see Kovacic [4] p. 518).

Every strongly normal extension of J^ in ^ is embeddable
over ά^ in a constrained closure of ^ in ^ ([3] p. 162, Th. 3 or
Blum [1] p. 42 (15)) and hence, in particular, is constrained over
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([3] p. 148, Th. 1). It is tempting to conjecture that the above
result generalizes to constrained extensions of ά^ in ^ . We shall
show (§ 2) by a counterexample that <%f can fail to be universal over
a constrained closure of ^ in ^ .

1* Strongly normal extensions* Recall ([2] p. 393), for a
finitely generated extension g^ of ^ in a given universal extension
^f of ^ 7 that gf is called strongly normal over ^ if every iso-
morphism σ over &~~ of ^ onto an extension of ^ in <%s is strong,
i.e., has the property that σc = c for every constant c in ^ and
&3ίΓ — o^ - 3ίf, where 3ίΓ denotes the field of constants of ^ .
This definition is apparently a relative one, depending on the universal
extension ^ of &~ in which gf is embedded. It is eary to see,
however, that if & is strongly normal over &~ relative to one ^ ,
then ^ is strongly normal over ^ relative to every ^ , so that
the notion of strongly normal finitely generated extension is an
absolute one. When ^ is not necessarily finitely generated over
J^y & is said, following Kovacic [4] p. 518, to be strongly normal
over ^ if & is the union of strongly normal finitely generated
extensions. Hence, also this more general notion is absolute.

It follows from [2] pp. 402-403, Th. 5, and the definition that
if 5f is any strongly normal extension of JF' and gf is any exten-
sion of ^ 7 both contained in an extension of Ĵ ~~ having the same
field of constants as ^ then S/'g7 is a strongly normal extension
of g7, and ^ and g7 are linearly disjoint over ? f l ? .

We now prove the main theorem of this paper which was stated
in the opening paragraph.

Proof, (a) We must show that if 2 .̂ is a finitely generated
extension of ^ in ^ and 3ϊf is any finitely generated extension of
^ i not necessarily in ^ , then there exists an embedding 3ίf —• ^
over 5^. As before, denote the field of constants of ^ by 3ίί, and
put <gf = &* n ^ 7 £?! = Sfx Π JTΓ Then £f = gf n J2T ([2] p. 393,
Prop. 9), ^ i is a finitely generated field extension of ^ ([2] p. 113,
Cor. 1 to Prop. 14), ^ is a universal extension of t^%7

1, and ^ g ^
is a strongly normal extension of ^ ^ ([2] p. 396, Th. 2). Thus, we
may replace ( ^ gf, ^ , j r 7 ) by ί^^, 5 ^ , ^ Ί , ̂ ^ ) , i.e., we may
suppose that ^ ^ , ^ have the same field of constants ^ .

(b) That being the case, fix a finite family β of generators of
ί̂ Ί over 2 .̂ Then ^ is a universal extension of J^(β) and 5^ =
^f^Xβ) is a strongly normal extension of J^Xβ}. Thus, we may
replace ( j ^ gf, gfx, ^g )̂ by (Ĵ </9>, ̂ , gfx, ^ ^ ) , i.e., we may suppose
that gfi = gf.



ON UNIVERSAL EXTENSIONS OF DIFFERENTIAL FIELDS 141

(c) That being the case, let & denote the field of constants of
y/. Then £& is a finitely generated field extension of <g*, so that

there exists an isomorphism £2f ̂  <3f' over ^ with &' a field ex-
tension of rώy in '"/Γ. Because gf and £^ are linearly disjoint over
^ ([2] p. 87, Cor. 1 to Th. 1), and likewise gf and &', this can be
extended to an isomorphism &£& ^ &&' over 5 .̂ This can in turn
be extended to an isomorphism £/£' ?& £>£", where Pϊf' is a finitely
generated extension of <&&' not necessarily in '?/. Now, ^ is a
universal extension of j**i^ ' , *&&' is a strongly normal extension
of .J^S^' in '^ , and ^r7' is a finitely generated extension of
with field of constants ^ ' . An embedding ^ ' -> <%s over
would, when composed with the isomorphism ^ 7 ^ ;>ί?' over gf,
yield an embedding //^ —> ̂  over gr. Thus, we may replace
O T S ^ , ^ ) by ( . ^ " ^ ' , 5 ^ ' , ^ ' ) , i.e., we may suppose that the
field of constants of t/ίf is ^ .

(d) That being the case, fix a finite family a of generators of
the extension ,?<? of gf, and put g" = JsXa). Then gr n ^ is a
finitely generated extension of ^ ([2] p. 112, Prop. 14), so that ^
is universal over gr Π 8*. Thus, we may replace (Sr, &, <-/if, &) by
(£-'•' Π ̂ , ĝ , v^ έ5 ); i.e., we may suppose that gf Π g7 = J^^ Since
.̂  is strongly normal over j^7 then the differential field ££-p — 5f&
is strongly normal over if and Ϋ/ and £f are linearly disjoint over

(e) Because // is universal over ,yr, there exists an isomorphism
c/ ^ έ?Ό over J / r with ĝ 0 an extension of ^" in '&, and this
isomorphism can be extended to an isomorphism σ: <#/ ̂  Ml, where
'/Λ\S is an extension of ά^ (and of gf0) not necessarily in //. Put

X ^ o gr. Then ,^;j = g/o^o, this differential field is a strongly
normal extension of g*0, and ^ 0 and g"0 are linearly disjoint over
jy"T Evidently ^ is universal over gf0 (because gf0 is finitely
generated over ^ r ) , and hence the strongly normal extension ĝ ogfo

of gf0 can be embedded in ^ over g'o, i.e., there exists an isomor-
phism σ0: ĝ  ίfo ^ .^23Ό over ^ 0 with cyogro = gf 2c ^ . The field of
constants of g 2̂ί^o, like those of r^o = S ô̂ o a n ( i ^ = S^ί?, is f ^ ,
and hence gf2gΌ and , ^ " are linearly disjoint cover ^ . Therefore
gfogΌ and gf2.^Γ are linearly disjoint over gf2. But by (d), gr and ĝ 7

are linearly disjoint over J^7 so that gf0 and ^ 0 are, too, and hence also
g; and gf2. Therefore g"0 and 2f2.'^Γ are linearly disjoint over J^7
But gf is strongly normal over j^7 so that S/'ccyrg^ ,3Γ = Z?2.9Γ.
Hence J?o and gf are linearly disjoint over JK Therefore, idOQ and
the isomorphism &« ρ& & (restriction of (σQ o σ)"1) extend to an iso-
morphism τ: $?2&n ^ Ŝ έfo The composite isomorphism τoσ{)oσ is an
embedding of W into 2/ over !?".
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2* A counterexample for constrained extensions* Recall that
an extension & of a differential field is said to be constrained ([3]
p. 144) if every finite family of elements of 90' is constrained over
^ in the sense of [2] p. 142, that a differential field is said to be
constrainedly closed ([3] p. 145) if it has no constrained extension
other than itself, and that 27 is said to be a constrained closure of
JF* ([3] p. 147) if 27 is constrainedly closed and is embeddable over
closed jF~ in every constrainedly extension of ,j/;7 A constrained
closure of ά?~ always exists, and it is a constrained extension of .ĵ T

We are going to exhibit an ordinary differential field j^7 & uni-
versal extension ?/ of ^ 7 and an extension 27 of JF" in ^ such
that 97 is a constrained closure of J^" and ^ is not universal over

Let <$" be any denumerable field of characteristic zero and put
j ^ — rέ?{%) — the field of rational fractions over v7 in an indeterminate
x; J^ has a unique structure of ordinary differential field with field
of constants 'tf in which the derivative of x is 1. By [3] p. 149,
Prop. 4, we may fix a denumerable universal extension <2S of ,9r.
By [3] p. 146, Cor. 1 to Prop. 3, ?/ is constrainedly closed.

The set of solutions in // different from 0 and 1 of the dif-
ferential equation

y' = t ~ t

is denumerable and hence can be arranged in a sequence

Vθf Vl, V-2,

By [3] §8, this set is infinite and is an independent set of conjugates
over ,j/% and J^Xflo, ΎJU η2, •> is constrained over ,ί/r (see [3J p. 144,
Prop. 1). Because ^ is constrainedly closed, J7Xη0, ηu η2f •••) has
a constrained closure 27 in //. The differential ideal [yr — y* + y2\
of the differential polynomial algebra 57{y} is evidently prime and
does not have a generic zero in 7/ (because all its zeros in % are
in 27). Therefore, 2/ is not universal over 97. (The same argu-
ment shows that (%f is even not universal over ,^(τ/()y ηu 7]2, •••>.) We
are going to show that 97 is a constrained closure of ,i^7

By [3] p. 144, Prop. 2(a), 97 is constrained over .^Γ Let ")ϊf
be any denumerable constrained closure of ,> r (e.g., any constrained
closure of ^ in ^ ) . The set of solutions in :>ίf of the above
differential equation can be arranged in a sequence

As before, this set is infinite and is an independent set of conjugates
over .iTT Therefore, there exists an isomorphism
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<P: ^XVo, Vu %, •> ̂  J^Co, Ci, Co, •> .

Now, J ^ ζ 0 , ζx, ζ2, •> is normal over ^ in ^ (see [3] §6 p. 153).
Hence, by [3] p. 159, Cor. 1 to Th. 2, 3ίf is a constrained closure
of j ^ ζ o , ζx, ζ2, •••>. Therefore, by [3] p. 158, Th. 2(b), 9 can be
extended to an isomorphism gf & £%f, so that gf is a constrained
closure of ,yr.
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