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Let A be a Banach *-algebra. A theorem is proved
concerning a sufficient condition for a continuous representa-
tion of A on a Hubert space H to be Naimark-related to a
^-representation of A on H. One corollary of this result
is that a continuous (topologically) irreducible representa-
tion of A on H is Naimark-related to a ^-representation of
A on H if and only if some coefficient of the representation
is a nonzero positive functional of A.

One purpose of the paper is to correct in part a previ-
ously published result the proof of which contains a serious
gap.

1* Introduction* Professor John Bunce has brought to my
attention a gap in the proof of Theorem 3 in my paper [2]. Briefly,
the problem is as follows: Let A be a Banach *-algebra, and let
π be a continuous essential representation of A (not in general a
*-representation) on a Hubert space H. What is established at the
beginning of the proof of [2, Theorem 3] is the existence of a
π-invariant subspace J5Γ0 of H and an inner-product on Ho with the
property that

<*(/)£, V> = <£, π(Γ)V> (ξ,vzH,feA).

At this point in the proof results are applied to this inner-product
which may be applied only when this form is closable on H; see
[4, pp. 313-315]. It is not proved in [2] that this form is closable,
hence the gap in the proof. Although Theorem 3 and its corollaries
have not been established in [2], we know of no counter-examples
to these statements. All of the results of [2] outside of § 4 (includ-
ing Theorem 1 and Theorem 7) are to our knowledge correct.

The aim of this note is to partially correct the error. Here we
prove a result similar to [2, Theorem 3], and derive from it several
corollaries. In particular, it is shown that a continuous, essential,
(topologically) cyclic, separable representation of a C*-algebra is
Naimark-related to a ^representation of the algebra; and that a
continuous (topologically) irreducible representation of a Banach
*-algebra A is Naimark-related to a ^-representation of A if and
only if some nonzero coefficient of the representation is a positive
functional on A.

2* The results* We use the same notation as in [2], In parti-

397



398 BRUCE A. BARNES

cular, we use the terminology cyclic and irreducible as synonymous
with what some authors call topologically cyclic and topologically
irreducible. Given a representation (π, H) of the Banach *-algebra
A, a coefficient of π is a functional on A of the form / —> (π(f)ξ, η)
for some ζ, η e H.

The representation π is essential if for any ξ e H the condition
π(f)ζ = 0 for all f eA implies ζ = 0. If a is a positive functional
on Ay then

THEOREM. Assume that π is a continuous representation of A
on a Hilbert space H and that π is cyclic with cyclic vector ξ0 e H.
Furthermore, assume that {ηm:meS} is a collection of vectors in
H, S being a finite or countably infinite index set, such that

( i ) aJJ) = (ττ(/)ίo, V™) ̂
a positive functional for all meS; and

(ii) span {\JmeS (π(A)*ηm)} is
dense in H. Then π is Naimark-related to a *-representation of
A on H.

Proof. Choose positive numbers {λm: m e S} so that cc = YimeSXmam

converges in the norm of the dual space of A, and

Vo = Σ ^mVm, converges in H .
meS

Then by (i) a is a positive functional on A, and

First we verify that

That Ka is the larger of these two sets is immediate. Now assume
that feKa. Then a(f*f) = 0 implies am(f*f)=0 for all m e S .
Thus

0 - ajgf) = (π(f)ξOy π(gyVm)

for all g eA and all meS. Thus by (ii) we have π(f)ξ0 — 0.
Now proceeding as in [2, (I)], define an inner-product on π(A)ξ0

by

<π(f)ξQy π(g)ζQ) = a(g*f) (/, geA).

For ζy ηeπ(A)ξ,y we use the notation τ(£, η) = (ξt V) and τ[f] = r(f, ς).
We prove that τ is a closable form [4, p. 315]. Assume {ξn}a
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domain of τ — π(A)ζQ9 and

ξn > 0(in H), τ[ξn - ξ J > 0

as n, m -» co. We must show that τ[ξn] —> 0 as n —> co. Now

-ζm,ξn)\ + \τ(ξmξn)\

Let ε > 0 be arbitrary. Since τ[ζn — ξm] -»0, τ[fw] is a Cauchy
sequence, we may choose M > 0 such that τ[ξn] <^ M for ^ ^ 1.
Choose iV a positive integer such that τ[ξn — ξm] < ε whenever
n, m^ N. For nf m^ N,

(1) τ [ f J ^ ( M ε r + | r ( ί m , f J | .

For each w choose Λ e A such that f% = π(fn)ξ0. Then τ(ίw, ίft) =
α(/*/J - Wίfjξo, Vo) = (^(/Jfo, ίr(Λ*)*7o) -> 0 as m -^ oo for each
fixed w. This fact together with (1) shows that r[£j —»0 as ^~>oo.

Let r denote the closure of the form r. By [4, Theorem 2.23,
p. 331] there exists a self-adjoint operator U with 3f(JJ) = &(τ)
such that

τ(ζ,V) = (Uξ, Uη) (ξ,yemU)).

Next we prove that <yK(U) - {0}. By [4, Corollary 2.27, p. 332]
7r(A)ί0 is a core of U (this means that the set {(TΓ(/)£0, Uπ(f)ξ0): fe
A} is dense in the graph of Z7 [4, p. 166]). Suppose ζ e ^V(U). Choose
{ / J c i such that

π(/Jf0 >ξ and CΓτr(Λ)f0 >0 .

Then α(/,f/J-||C77r(Λ)fo||
2->O. Thus am(f*fn)-»0 for each m.

Therefore for each m e S and all geA

^ am(gg*r2am(f*fnΓ > 0

as n —> co. It follows that for each m

as w~> oo. Therefore (ξ, π(g)*ηm) = 0 for all gfei and all meS, so
by (ii), f = 0.

Since ^yp^{U) = {0}, 17 has dense range. Then again using the
fact that π(A)ξ0 is a core of 17, we have that Uπ(A)ξ0 is dense in H.

Now we complete the proof that π is Naimark-related to a
^representation of A. By [2, (I)] we have

τW)ξ, V) = <ζ, π(f*)V) (ί, 5? e π(A)gQ, feA).
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For fe A define φo(f) on Uπ(A)ξ0 by

= Uπ{f)ξ ( ίeτ

A routine calculation using the observation above shows that for all
feA and all ζ,ηe Uπ(A)ξ0

(9>o(/)f, V) = (6 ?>o(/*)?)

By [5, Prop. 5] there exists a unique extension of φ0 to a ^repre-
sentation φ of A on H ( = the closure of Uπ(A)ζ0). Let ζe£2f(JJ).
Again using that π(A)ξ0 is a core of U9 choose {/„} c A such that

>ζ and t W J ί o > Uξ .

Then for any feA

π(f)π(fn)ξ0 >π(f)ξ,

and

Uπ(f)π(fn)ξ0 = φo(f)Uπ(fn)ξo

Since ί7 is closed, π{f)ζe&(U), and Uπ(f)ξ = φ(f)Uξ. Thus π is
Naimark-related to <£>.

COROLLARY 1. Let (π, H) be a continuous irreducible representa-
tion of A. Then π is Naimark-related to a *-representation of A
on H if and only if some coefficient of π is a nonzero positive
functional on A.

Proof. Assume that ξ0, Ύ]QeH with / —> (π(f)ζ0, η0) a nonzero
positive functional on A. Since π is irreducible, ξ0 is a cyclic vector
for π. Now π(A)*η0 is a nonzero subspace of H with (π(A)*ηo)

L a
closed π — invariant subspace. Then since π is irreducible, ττ(A)* 0̂

is dense in H. By the theorem, π is Naimark-related to a ^repre-
sentation of A.

Conversely, assume that U is a closed densely defined operator
on H, φ is a *-representation of A on £Γ, and

Uπ(f)ξ = φ(f) Uζ (ξ e ^ ( tθ, / e A) .

Then U*U is densely defined [4, Theorem 3.24, p. 275]. Choose a
vector ζoe&(U), ξo^O, such that UζQe&{U*). Set % = ?7*t/f0.
Then for feA,
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Thus f-*(π(f)ξ0, Vo) is a nonzero positive functional on A.
For group representations the result analagous to Corollary 1 is

the following.

COROLLARY 2. Assume that G is a locally compact group. Let
(π, H) be a bounded weakly continuous irreducible representation of
G on a Hilbert space H. Then π is Naimark-related to a weakly
continuous unitary representation of G (on H) if and only if some
coefficient of π is a (nonzero) positive definite function.

If A is a C*-algebra, we use the notation A to denote the von-
Neumann enveloping algebra of A [3, 12.1.5].

COROLLARY 3. Let A be a C*-algebra. Let π be an essential
continuous cyclic representation of A on a separable Hilbert space
H. Then π is Naimark-related to a *-representation of A on H.

Proof. By [1, Theorem 1] π extends to an ultraweakly contin-
uous representation π of A on H. Let ξ0 be a cyclic vector for π.
Assume ζeH and ξ±(π(A)*H). Then (π(A)ξ) ± H, so that ξ = 0.
Therefore π(A)*H is dense in H. Choose a sequence {ζm} c H such
that

( CO \

U (ττ(A)*ζm) is dense in H .
m=l /

For each m, set

, CJ (/eA).

Since βm is a normal functional on A, by the Polar Decomposition
Theorem [3, p. 240] there exists a partial isometry umeA and a
positive functional am on A such that

βm(f) = am(umf) and am(f) = βm(u*mf) (f e A) .

Let ηm = (π(ut))*ζm for each m. Then for each m and all feA

Also, (S(/)£o, CJ = βm(f) = am(umf) = (π(f)ξ0, (π(uj)*ηm) for al l/e A.
Therefore (π(um))*ηm = ζ w . It follows that

(
+oc _ — \
U(π(A)*)7m)) is dense in fΓ.
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By the theorem 7Γ is Naimark-related to a ^representation of A on
H. This completes the proof.
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