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The main purpose of this paper is to prove the following
theorem. Let R be a noetherian ring and n a nonnegative
integer. Then R[XU •• ,-Xn] is a going-between ring (=GB)
iff R is GB and is (w+l)-piecewise catenarian.

In [7] Ratliff proved that all polynomial rings over an unitary-
commutative noetherian going-between-( = GB)-ring R are again GB
iff R is catenarian (thus universally catenarian by [6, (3.8)] and [5,
(2.6)]). (Recall that R is called a GB-ring if for any integral exten-
sion Rr of R each adjacent pair of Spec (jβ') retracts to an adjacent
pair of Spec (#).)

In the meantime we showed that there are noetherian GB-rings
which are not catenarian, thus giving a negative answer to a
corresponding question of [7] (s. [2]). So it may be interesting to
know more about the relations between the GB-property of poly-
nomial rings and the chain structure of Spec (R). In this note we
shall investigate such a relation, thereby improving Ratliff?s above
result.

To formulate our statement, let us give the following

DEFINITION 1. R is called n-pίecewise catenarian ( = Cn). If
(R/P)a> is catenarian for any pair P, Q of Spec (R) related by a
saturated chain P = Po g= Px £ §i P, = Q of length i <£ n.

Our main goal is to prove

THEOREM 2. Let R be a noetherian ring and n a nonnegative
integer. Then R[Xlf •••, Xn] is GB iff R is GB and satisfies the
property Cn+1.

Noticing that R is catenarian iff it is Cn for all n > 1, this
gives immediately the quoted result of Ratliff.

To prove 2, let us introduce the following notations

3. ( i ) c(R) = set of lengths of maximal chains Poξί P^
of Spec (R) (s. [3], where c(R) was investigated).

(ii) If i? is semilocal with Jacobson radical J, put d(R) =
min {dim (R/P), where P is a minimal prime of R}, R denoting the
J-adic completion of R (s. [1]).
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We also shall use the following characterization of GB-rings,
whose proof is immediate from the basic results of [6] and [7].

PROPOSITION 4. For a noetherian ring R the following state-
ments are equivalent:

( i ) R is GB.
(ii) For all P,Qe Spec (R) with P £ Q the ring T = (RIP)Q is

GB.
(iii) For all T as in (ii) we have c(T) = c(f).
(iv) For all T as in (ii) we have minc(Γ) = d(T) = minc(Γ).
(v) For all T as in (ii) which moreover are of dimension >

one, we have d(R) > 1.

To prove 2 we start with the case n = 1.

LEMMA 5. Let R be a noetherian ring. Then R[X] is GB iff
R is GB and satisfies C2.

Proof. "<=" Let R[X] be GB. Then so obviously is R = R[X]/

(X).
To show that R satisfies C2 let P ξί Q §Ξ S be a saturated chain

of Spec (R) such that ht(S/P) > 2. We have to prove that R[X]
fails to be GB under this assumption. In replacing R by {RjP)s we
may restrict ourselves to show that R[X] is not GB, where (R, M)
is a local domain of dimension > 2 = min c(ϋJ), which moreover is
GB.

Let P be a minimal prime of R whose dimension is 2 (such a
P exists by (4)). Choose aeM — (0) and let beM be outside of all
minimal prime divisors of aR and of aR + P. Put / = aX + 6.
Then we first have the inclusion fR[X] + PR[X] £ MR[X] showing
that there is a minimal prime Q of /i?[X] + Pi2[X] with QQMR[X].
As feί(Q/Pβ[X]) = 1, we have the following two possibilities for

Q = P, or ht(Q/P) = 1 and a and & belong to Q. By our choice
of a and δ we may exclude the second case. So, as ht(Q/PR[X]) =
1, Q is a minimal prime of /B[X]. But now Λί(ΛCB[X]/PjS[Z]) =
ht(MR/P) implies that /^(MJ?[X]/Q) = 1. From this we conclude
that f{R[X]MR[χ^ k a s a minimal prime divisor of dimension one. On
the other hand we have a canonical isomorphism of iϋ[X]-algebras

which shows that /(i2[X]JfΛ[X])Λ has a minimal prime divisor of
dimension one.

Let us denote this prime divisor by Sf and put S=S'ΓιR[X]MRίx].
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Then, by the flatness of completion, S' is a minimal prime divisor
of SR[X]MBίjn and S is a minimal prime divisor of fR[X]MR[χi- 0 u r

choice of a and b implies that S" = R[X] Π (Λ - (O))~1/K[X] is the
unique minimal prime divisor of fR[X]. Thus S = S"R[X]MRUn is
the unique minimal prime divisor of fR[X]MRixi- This implies that
T = R[X]MRixi/S is of dimension ht(M) - 1 > 1 but such that d(T)S>
dim (S') = 1. So, by (i) => (v) of (4) R[X] is not GB.

"=>" By 4 we may restrict ourselves to prove

6. Let (R, M) be a noetherian local domain which is GB and
C2 and let U be a simply generated extension domain of R. Let
NeSvec(U) such that Nf)R = M and ht(N) > 1. Then it holds
d{UN)>l.

Put UN = T. If d(R) ^ 2 4 shows that min c(R) ^ 2. Thus the
C2 property of R and 4 imply that d(R) = dim (JB), hence that J? is
quasiunmixed. But then T is also quasinmixed ([5], Cor. (2.6)] and
therefore satisfies d(T) = ht(N) > 1.

If d(R) > 2 we use the inequality

d(T) - d(R) ^ deg trans (T: R) - deg trans (U/N: R/M)

(s. [1, (4.4) (i)]), which gives the result as both of its right hand
terms are 0 or 1.

Next we give two results which deal with the Cn property of
polynomial rings.

LEMMA 7. Let (JB, M) be a noetherian local domain and let
(0) ^= Po^ P1

(^ ξz Pn ~ M(n ^ 2) be a maximal chain of Spec (R)
such that ht(M/Pn-2) = 2. Then there is a saturated chain Qo £
Qx §i . . . gΞ Qn_2 £ Qn_λ = MR[X] satisfying:

QtΠR^Pi and ht{MR[X]IQx) = ht(MIP%) -1 for i = 1, , % - 2 .

Proof. Choose α eI f — PΛ_2 and let beM be outside of all
minimal prime divisors of aR + Pέ for i = 1, , n — 2. Put / =
aX + b. Then for all indices i in question fR[X] + PiR[X] has
exactly one minimal prime divisor, say Qέ. This implies that Qo g
Qx S £ Q-2 £ MB[X], Q*ΠΛ - P4 and fcίCMBI-SΓl/QJ = ht{MIP%)~
1 for i = 1, ••., w - 2.

Thus it remains to prove that htiQJQi^) ^ 1 for 1 <L i <L n—2.
But this is immediately clear from htiQJPi^RlX]) ^ 2, a relation
due to ζ>z Π i? = P< and the fact that R is noetherian.
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COROLLARY 8. Let R be a noetherian ring. Assume that for
each maximal ideal M of R the ring R[X]MRIXΪ satisfies CΛ_i, where
n is an integer >2. Then R satisfies Cn.

Proof Let P, QeSpec(JB) be such that P c Q and such that
2 ^ min c(Γ = (R/P)Q) = m ^ n. We have to show that dim (T) = m.
Obviously we may replace R by T, hence assume that (R, M) is a
local domain with min c(R) = m <^ n, and restrict ourselves to prove
that ht(M) = m.

Thus let (0) = Po §5 §Ξ P w = Λf be a maximal chain of Spec(iϋ).
Then it is clear that Pm_2R[X] £ Pm_1i2[X] £ MR[X] form a saturated
chain of Spec (R[X]), hence, by the C2 property of i2[X], that
ht(MR[X]/Pm_2R[X]) = 2. This shows that ht(M/Pm_2) = 2, and so
we may choose a chain Qo ϋ Qi S Qm-2 £ Q»-i = Mffi[X] as in
7. Now Λt(ΛfB[X]/Q0) = ht{M) - 1 and λί(MZ2[JC]/Q0) = m - 1 (this
latter is implied by the Cn_x property of i2[X]jfΛ[χj) prove the
result.

LEMMA 9. Let R be a noetherian GB ring which satisfies Cn

for an integer n ^ 2. 27&ew i?[X] satisfies Cn^λ.

Proof As each ring is Cu we may assume that n > 2. Thus
let P, 0 £ Spec(β[X]) such that P c Q , 2 ^ m = min c((i?[X]/P)^) ^
w - 1. Then we have, with P - P Π β, Q = Q Π P:

min c ((Λ[X]/(P))f) ^ m + 1, if Q Φ QR[X] ,

and

mine ((R[X]/(P)){Q,X)) ^ m + 2, if Q -

Applying [3, (3.7)] we get d((R/P)Q) ^ m + 1. As iϊ is GB,
(i) =• (iv) of 4 shows that min c ((R/P)Q) <. m + 1 <^ n, and the fact
that R is Cw implies that T = (R/P)Q is catenarian. As Γ is GB it
therefore is even universally catenarian, and so finally (R[X]/P)Q is
catenarian.

REMARK 10. Noetherian Cn rings appearently never have been
studied for their own sake. Cn seems to be related to GB in general,
as the GB property of R is easily proved to be a necessary hypo-
thesis in (9) if n > 2. Note also that in general the properties Cn

and Cn+1 are independent (s. [2]) even for quasiexcellent GB domains.

Now we may prove our final result, from which 2 follows
cleraly.



PIECEWISE CATENARIAN AND GOING BETWEEN RINGS 419

PROPOSITION 11. Let R be a noetherian ring and let ne N.
Then the following statements are equivalent:

( i ) R is GB and satisfies Cn.
(ii) R[Xl9 , Xm] is GB and Cn.m for all m < n.
(iii) R[Xlf •••,!..!] is GB.

Proof, "(i) => (ii)" is immediately proved by induction on m, in
making use of 5 and 9.

"(ii) => (iii)" is clear.
"(iii) => (i)" Use 5 and 8 to make induction on n.

To conclude this paper, let us note that the arguments in 5
give rise to an easy proof of the following result of Ratliff [7].

COROLLARY 12. Let R be a noetherian ring. Then R[X] is
GB iff R[X]MR{χ] is GB for all maximal ideals M of R.

Proof. If R[X]MBίx] is GB for all M in question, so is RM, hence
R. But to prove "<=" of 5 we obviously only made use of the
GB property of the rings R[X]MRίx]. So we see that R is C2 and
5 gives the result.
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