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We show that the Keesling-Mardesic shape fibration has
an uncountable number of fibers of different shape type.
This is done by showing that an uncountable number of
nonisomorphic groups can arise as direct limits of direct

limit sequences having all groups Z@® Z and all bonding

homomorphisms given by one of the two matrices <%) g) or

032

A. Introduction. The notion of shape fibration has been deve-
loped by Mardesié¢ and Rushing in [4, 5, 6]. In [4] the following
question was raised: Let p: E — B be a shape fibration and let
2, ¥y € B be points belonging to the same component. Do the fibers
pYz) and p~'(y) have the same shape? In that paper, this was
shown to be the case if £ and ¥ belong to the same path component,
and in [5, Corollary 1], this was shown to be the case if « and ¥
belong to a subcontinuum of B of trivial shape. In [3], Keesling
and Mardesié gave an ingenious example of a shape fibration with
connected base space and showed that it has two fibers of different
shape. We show that their example, in fact, has an uncountable
number of fibers of different shape.

Let an inverse limit sequence of spaces be given where each
space is T? = S* x S* and each bonding map is given by one of the
two matrices <$ g) or G g) Here the given matrices each induce
a continuous homomorphism on R? which in turn defines a continuous
homomorphism on 7° via the covering map e X e: R? — T? where
e(t) = e, Let X be the inverse limit space of such a sequence.
Then the discussion in [3, §§2, 8] and [3, Lemma 1] implies that the
Keesling-Mardesié fibration has a fiber homeomorphic to X.

Consider the direct limit sequence of groups where each group is
Z @D Z and each bonding map is given by the transpose of the cor-
responding matrix in the inverse sequence above. Then by [3, §5],
the first Cech cohomology group H 1({(, Z) of X is isomorphic to the
direct limit of this sequence. Since Cech cohomology is an invariant
of shape type, it suffices to show that there are an uncountable
number of isomorphism classes of such direet limit groups.

Thus the groups we are interested in arise as direct limits of
sequences
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So S Je

G, G,— G,

of abelian groups and group homomorphisms, where each G, = Z@H Z

and each f, is given by one of two matrices ((1) g) or ((1) ]2‘> (We

are viewing the elements of Z& Z as column vectors, so that f,
acts as left multiplication by the chosen matrix.) Our task is to
show that among the groups G appearing as direct limits of the
above form, there are uncountably many isomorphism classes. This
result is folklore among abelian group theorists. An effort is made
here to give a presentation that is as accessible as possible.

For convenience in labelling these groups and comparing them,
we shall use a few computations within the field of 2-adic numbers.
For the reader’s convenience, we review the basics of this field and
its construction in the following section. Details may be found, for
example, in [1, Chapter I} or [2, Chapter V, §5]. We would like to
thank Richard S. Pierce for bringing these 2-adic methods to our
attention.

B. 2-Adic numbers. For any rational number x, the 2-adic
valuation of x, denoted v,(x), is defined as follows. If x = 0, then
V() = oo. If 20, then x may be uniquely written in the form
x = 2"a/b, where n, a, b are integers, a and b are odd, and b + 0; in
this case, vy(x) = n. Clearly v,(zy) = v,(x) + v,(¥), and it may be
checked that v,(x + y) = min{v,(x), v,(¥)}.

The 2-adic valuation v,(—) is used to define the 2-adic absolute
value | -], on @, by the formula

@], = 272,

(Some authors refer to |- |,, rather than v,(—), as the 2-adic valuation
on Q.) The basic properties of v,(—) translate into the following
basic properties of |- |,

(i) |z, is a nonnegative real number, and |z|, = 0 if and only
if x =0.

(ii) |2yl = ]$]2|y|2

(iil) [z + y|. = max{|z], [y} =< |2], + [¥]..

It is clear from these properties that the rule d,(z, ¥) = |2 — ¥,
defines a metric on @, called the 2-adic metric.

We shall use @ to denote the completion of @ with respect to
the metric 0,. Since addition and multiplication in @ are uniformly
continuous with respect to 4,, they induce addition and multiplication
operations in QF. Then @QF becomes a field, known as the field of
2-adic numbers. The completion of Z with respect to 4, is then a
subring Z% of QF, known as the ring of 2-adic integers, and it may
be checked that QN Z; = Z.
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The elements of ZF may be explicitly represented as (limits of)
series. Given any sequence &, &, &, --- of zeros and ones, the series
S x2F converges in ZF; conversely, every element of ZF may be
uniquely represented as such a series. In particular, it follows that
Z# is uncountable.

C. Change of perspective. Given a group G obtained as a
direct limit as in §A, we wish to present G in a form more suitable
for computation. Each of the maps f, is given by a matrix (é %"),
where ¢, =0 or 1. Set a, = >7-, 62" for all » =0, 1,2, ---, and let
a be the 2-adic integer >7.,¢,2%.

Let V be a 2-dimensional vector space over @, with basis {x,, x,}.
Set z, = x,, set

(1) 2, = (0, — aﬂ-lxl)/zn

for n =1,2, .., and for all n let 4,,, be the subgroup of V generated
by =z, and z,. Observing that

(2) 2y = &,% + 22,4,

we see that 4,, < A, .+;. Thus 4, = Uy, 4., is a subgroup of V,
and we claim that A, = G.

Since A, is a free abelian group with basis {z,, z,}, there is a
group isomorphism g¢,: G, — A, given by the rule g, (g) = ax, + bz,.
Note, using (2), that the following diagram commutes:

Jo J1 Ja

GO Gl GZ

gol gll gzl
< o o

Aa,o — Aa,l — Aa,z —

As the direct limits of the top and bottom rows are G and A4, we
obtain G = A,, as claimed.

There is a projection V — @ mapping z,— 0 and x,— 1. The
image of A, under this projection is the group of all rational numbers
of the form a/2" (where a,neZ and » = 0), which is not finitely
generated. Therefore A, is not finitely generated.

D. Isomorphic groups. The question now is, for what values
of o are the groups A, isomorphic? Consider another group A,
where 8 = X2, 0,2 in ZF, and each 6, =0 or 1. Set B, = >\1,06,2"
for all n. Set w, = x,, set

(3) W, = (T — Bus®)[2"
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for n =1,2, ---, and for all n let A4, , be the subgroup of V generated
by z, and w,. Then

(4) w, = B'nxl + 2w'n+1

for all n, so that A4;, & 4;,., and we set 4; = U= 4;...
We claim that if A, = A,, then

(5) (@ry, — rx)B = 1y — ary

for some integers 7,;.

Thus assume that there is a group isomorphism A, — A4;. Observ-
ing that we may identify A4, @.Q and 4, ®,Q with V, we see that
the group isomorphism A, — A, induces a vector space automorphism
g:V —V such that g(4,) = A,. There exist integers »y, 7, 7, 7, 8
(with s # 0) such that

(6) 9(x;) = (ru/s)x, + (ry/s)w, ,

and we shall prove (5) using these r;;. Note, from combining (6)
and (1), that g(z)) = (ry/s)x, + (ry/s)x, and

(7) 9(z,) = [(ry — a,_7ry)/2"s]e, + [(7 — a, 1) /2"s]x,

forn =1,2,---.

E. The computation. As g(4,) = A, there is a nonnegative
integer ¢ such that g(x,)e 4;,. For all n =0,1,2, ---, let k(n) be
the least integer such that k(n) =t and ¢(z,) € 45 4. In view of
(2), we see that g(z,) lies in A; 4+, Whence k(n) < k(n + 1). Thus
k(0) < k(1) < --- is an increasing sequence of nonnegative integers,
and we claim this sequence is unbounded.

If there is an integer k& with all k(n) <k, then g(x,) € 4;, and
all g(z,) € A;,,, whence g(4,) € A;,. Since A4;, is finitely generated,
this would imply that A, is finitely generated, which is false. Thus
the k(n) are unbounded, as claimed.

In particular, there exists a positive integer N such that k(n) >t
for all n = N.

As 9(z,) € A; 1y, We must have

(8) g(zn) = Q% + bnwk('n)

for some a,, b,€Z. If k(n) >t and b, = 2¢ for some ¢ <€ Z, then we
see using (4) that

(9) 9(2,) = @, @ 4+ (Wiin—1 — Opimy—1%s)

and so ¢(z,) € As 1m—1, Which contradicts the minimality of k(n). Thus
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b, must be odd whenever k(n) > t. In particular, b, is odd for all
n = N.
Comparing (7) and (8), with the help of (3), we obtain

(10) (2*™a, — B -1ba)[25™ = (1y — A,_7,)[2s
11) b”/zk(n) = (Ty — an—{rm)/zns
for all » = 1. Cross-multiplying (10) and (11) yields

(12) (g — QU y711)b, = (3 — an—z"'m)(zkwan — Bim-10,) -
When % = N, we have b, odd and so can divide by it, yielding
(13) Ty = Qi = (T — Ay y)[25™(@,/b,) — Biim—1] -

We intend to take the limit of (18) in QF as n — .
As b, is odd, v,(b,) =0 and so |b,|,=1. As a, is an integer,
v(a,) = 0 and so |a,], < 1. Consequently,

(14) |26 (g, /b,) |, < |2k, = 27km

Since the %(n) form an unbounded increasing sequence, 27*® — 0,
hence 2¢*(a,/b,) — 0 in QF.
Thus we can now compute the limit of (13) as » — oo, obtaining

(14) Py — a1y = (1 — ary)(—0),

which is equivalent to (5).

F. Uncountably many groups. Put an equivalence relation ~
on Z}, defined by a ~ g if andonlyif 4, = 4,. Ifa¢Zanda~ g,
then (5) shows that

(15) B = (ry — ary)[(ry — ary)

for some integers 7,;, hence there are only countably many possibilities
for B. Thus if a¢ Z, then the equivalence class of a is countable.
For a e Z, either the equivalence class of a is contained in Z, or it
coincides with the equivalence class of some 3¢ Z; in either case, the
equivalence class of « is again countable.

Thus all the equivalence classes with respect to ~ are countable.
As Z¥ is uncountable, there must be uncountably many equivalence
classes. Therefore there are uncountably many isomorphism classes
of the groups A..
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