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Let (M,G,a), (N,H,B) be W*sgystems, FL(G; My) and
Fy(H; Ny), their Fourier algebras. The main result is that
F(G; My) and F3(H; Ny) are isometrically isomorphic as
Banach algebras if and only if M (resp. G) is isomorphic
to N (resp. H) by 0 (resp. I) such that 8;,0c0=0ca, for all
g€G, or M (resp. G) is anti-isomorphic to N (resp. H) such
that S;q-1,00=0ca, for all geG.

1. Introduction. For locally compact abelian groups G and
H, Pontryagin’s duality theorem mentions that L(G) is isomorphic
to L'(H) if and only if G is isomorphic to H. Y. Kawada [4] and
J. G. Wendel [11] proved the same statement for arbitrary locally
compact groups.

When G is a locally compact abelian group, L'(G) is isometrically
isomorphic to the Fourier algebra A(G) in [7]. Therefore A(G) is
isomorphic to A(H) as Banach algebras if and only if G is isomor-
phic to H.

P. Eymard [1], on the other hand, defined the Fourier algebra
A(G) of a locally compact group G and showed that it is isomorphic
to the predual m(G), of the von Neumann algebra m(G) generated
by the left regular representation of G.

M. E. Walter [10] showed that A(G) and A(H) are isometrically
isomorphic as Banach algebras if and only if G and H are isomor-
phie.

Recently for W*-system (M, G, a), the Fourier space F,(G; M,)
was defined in [8] such that F,(G; M,) is isometrically isomorphic
to the predual of the crossed product G @. M as Banach spaces.

M. Fugita [2] quite recently defined the Banach algebra structure
in the Fourier space %G; M,). Then he showed that the group
of all characters F,(G; M,) of F.G;M,) is isomorphic to G and
studied the support of the operators in G @. M. '

In this paper we generalize the Walter’s result for W*-system
(M, G, a).

The author would like to express his thanks to Professor O.
Takenouchi, Mr. M. Fugita for many fruitful discussions, Professor
M. Takesaki for a lot of suggestions and constant encourgement
during his stay at U.C.L.A.

2, Notations and preliminaries, Let M be a von Neumann
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algebra on a Hilbert space § and G be a locally compact group.
The triple (M, G, @) is said to be a W*-system if the mapping a of
G into the group Aut(M) of all automorphisms of M is a homomor-
phism and the function g — woa,(x) is continuous on G for all xe M
and w € M, where M, is the predual of M.

The crossed product G Q.M of M by a is the von Neumann
algebra generated by the family of operators {m.(x), M;(9); x€ M,
geG};

@.1) (ma(2)E)(h) = ai'(@)é(h)
(Ne(9)8)(h) = &(97h)
for & e L¥G; 9).

Each element @ in the predual (G @®.M), of G @.M may be
regarded as an element u, of C*G; M,);

(2.2) uo[9](@) = Ta(®)N6(9), @)

for all xeM, geG where C¥G; M,) is the space of all bounded
continuous M,-valued functions on G. We denote F.(G; M,) = {u,;
0we(G®. M)} CYG; M,). A norm || || is defined on F,(G; M,) by

lwall = [l@]] -

Then ||u|l. < ||u]|| for all u € F,(G; M,) where || ||. is the sup-norm
on C¥G; M,). We define a product on F,(G; M,) by

(2.3) (wv)[gl@) = w[gl(@)v[g](1)

for all u,ve F(G; M,),xec M and geG. Then F,(G; M,) is a Banach
algebra ([2] Theorem 3.5). So that we can define products between
G @« M and F.(G; M,);

T, vy = (T, veu)
(Tu, vy = (T, uxv)

for TeGQ.M, u, ve F (G; M,)((3.7), (3.9) in [2]).

Let !T be an operator in G @, M. Then the supp(T) of T is
the set of all g€ G satisfying the condition that \.(g) belongs to
the o-weak closure of TF,(G; M,) [See [2] Proposition 4.1].

THEOREM 1. Let (M, G, o), (N, H, B8) be W*-systems and F.(G;
M,), Fy(H; N,) their associated Fourier algebras. Let ¢ be an
isometric isomorphism of F.G;M,) onto Fy(H;N,) as DBanach
algebras.

Then we have five elements (k, p,q, I, ) with the following
properties:
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(1) keG@G such that n(k) = 9(\y(e)) where ‘g is the transposed
map of ¢ and e is the identity of H.
(2) I is an isomorphism or anti-isomorphism of H onto G.
(3) p (resp. q) is a projection of Z, N M¢ (resp. Z, N N¥)
where Z, (resp. Zy) is the center of M (resp. N) and M¢ = {x e M:
a,(x) = x for all ge€G}, N¥ = {x € N: B,(x) = « for all he H}.
(4) 0 is an isometric linear map of N onto M such that
6 is an isomorphism of N, onto M,
0 is an anti-isomorphism of N,_, onto M,_,.
(5) ¢w)[h](y) = (u)[L(R)]OW)P) + GuI(R))](a;uw @Y — D))
for all ye N, he H and u € F(G; M,), where (,u)[g](y) = ulkg](a.(y)).
(6) 601B8:(y)] = [armb®]p + a0yl — p) for all ye N, he H.

Proof. The transposed map ‘¢ of ¢ is an isometric linear map
of HQ; N onto G @, M. Using [3] Theorem 7, 10, we get;

‘0 = "d(ng(€)(v; + 7.4)
where v, is an isomorphism of (H@; N),. onto (GQ.M),, v, is an
anti-isomorphism of (H@; N),_., onto (GQ.M),_,,, 2 (resp. z)
being a central projection of G @. M (resp. H@; N). (2.4)
It follows from (2.3) that for all u, v € F.(G; M,),

Cena(h), uxv)y = (ng(h), g(uxv))
= (g(h), p(u)*$(v))
= vg(h) @ Mg(h), s(u) @ ()
= {"¢(\u(h)), up<*¢(Nu(h)), v) .

Therefore ‘¢(Agz(h)) is a character of F,(G; M,) for all heH,
which implies /t\hat ‘s(ng(H)) S Ng(@) because the group of all
characters F,(G; M,) is isomorphic to G ([2] Theorem 3.14), more-
over since ¢ is an isomorphism,

‘d(Za(H)) = M(@) .

We denote A;(k) = ‘d(N\y(e)).
By the same argument in [10] Theorem 2, we get that

(2.5) 7 = "$(hu(e)) ¢ = 11 + 14

is a C*-isomorphism in Kadison’s sense [3] and Y(\u(h)Nu(hy) is
either Y(Az(h))v(Ag(hy)) or ~Y(glh))vy(Nu(h,), moreover if we put
Ne(L(h)) = Y(Ng(R)),
(2.6) then I is either an isomorphism or an antiisomorphism of H
onto G.

The transposed map + of v is also an isometric isomorphism of
F.(G; M,) onto Fy(H; N,). Then we get;
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r(me(y)y wxv) = {mp(y), F(uxv))
= {mp(Y); Pu)x4p(v))
= {mp(y) ® 1, y(u) Q ¥(v))
= {7(@s(y)), wxv)

for all ye N, u, ve F.(G; M,).

By [5] Proposition 2.8, we obtain v(ws(y)) is an element of 7. (M),
so that we can define an isometric surjective linear map 6 of N onto
M by 0 = w;toyorm,.

Since v is a Jordan isomorphism,

V(I (@) + 7@ )(T) = (T, #']) = 2v(T%?)

for all Te H@; N, therefore we get v(T%) = v(T)z.

Hence v(ms(xy))z = v(ws(x))v(ws(y))z for all x, ye N.

Since z is a central projection of G @, M, z is also a projection
of 7z, (M), then we get;

@.7 Y(p(xy))p = Y(7a()) v (7ws(y)) D

for all z, y € N where p is the central support of z in =, (M)

We denote by ¢ the central support of 2z’ in w;(N), then the
equations v(q)z = v(g?') = v(z') = z imply that v(q)p = p, similarly we
obtain v™(p)g = ¢ so that v(¢) =v(v"'(»)a) =v(v* (@) (@)p = »¥(q) = p.

Hence # is an isomorphism of N, onto M, and ¢ is an anti-
isomorphism of N,_, onto M,_,.

The projection p (resp. q) is G-invariant (resp. H-invariant) since
To(M)" = Ne(9)Ta( M) Ne(g)* and Ag(g)2he(g)* = 2.

Now we have already proved (1) ~ (4) and the statements (5),
(6) still remain to prove.

For all ye N, he H we get,

(T 0B}z = Yu(R)Ts(Y)Nu(h)*2")
= N(I(h) oo O(Y)Ne(I(h) )2

= (oo Qs 00} (W) ,
hence
HOBh = al(h)OH on Nq ’

and similarly
0oy = @yp—y°0 on Ny, .

Therefore 6038,(y) = ;0P + Ar4-14,°0(y)(L — p) for all ye N
and he H. To prove the statement (5), we shall show first,

supp ¥ (ws(Y)hy(h)) = {I(h)} .
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For since v(@a(y)Au(h))u = Y(@s(y)hug(h)y(w)) for all u e F (G; Mx)
and « is surjective,
[Y(@s(Y)nu(R) Fo(G; M )]0
= Y[ws(Y)Nu(h) Fs(H; N7

where [---]7°"* means a o-weak closure, on the other hand,
[e(Y)Ne(R) Fs(H; NI N Mg(H) = Chg(h)
because of supp 7w(y)Ag(h) = {h}, so that we obtain;
[Y@e(Aa(R) Fo(G; M) N Ne(G) = Cng(I(h))
supp 7(ws(Y)ha(h)) = {I(h)} .
By [2] Theorem 4.4 or [6] Proposition 6.1, there exists an
element z of M such that v(wy(y)hg(h)) = 7 (@2)Ne(I(R)).
TT(2)Ne(I(h))2
= Y(@s(Y)Nu(h))z
= Y(@s(Y))7(\u(h))z
= T (0(Y))Ne(I(R))2
then
xp = 0(y)p, and similarly 2(1 — p) = a;;,0»A — p) .
We get;
= 06y)p + awdyL — p),
Y@ (Y)Nr(h)) = w0 Y)DIN(L(R)) + To(r0( W)L — D)Ne(I(R)) -

By (2.2), ¢(u) = 4(,u) for w e F,(G; M,) and the above equation,
we can get the statement (5).

REMARK 2. Theorem 1 is a generalization of [10] Theorem 2.

COROLLARY 3. Let (M, G, a), (N, H, B8) be W*-systems and the
two actions a and B are ergodic on their cemters (that is Z,NME=

The following statements are equivalent;

(1) F.G; M,) is isomorphic to Fy(H; N,) in the sense of Banach
algebra

(2) there exists either an isomorphism I of H onto G, an
isomorphism 6 of N onto M such that 6.8, = a;,,°0 for all he H,
or an anti-isomorphism I of H onto G, an anti-isomorphism 6 of N
onto M such that 6-8, = a;;,-1,06 for all he H.
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Proof. Suppose ¢ is an isometric isomorphism of F,(G; M,) onto
F,(H; N,) and we use the same notations in Theorem 1. The pro-
jeetion p in (8) of Theorem 1 must be zero or 1 by the ergodicity
of the action a, then @ is either an isomorphism or an anti-isomor-
phism of N onto M.

When G is a locally compact abelian group (it follows from (2.6)
that H is a locally compact abelian group), I in (2.6) can be regarded
as both an isomorphism and an anti-isomorphism, therefore the
statement (2) follows from Theorem 1 when G is abelian. Hence we
may assume that G is non-abelian.

When I is an anti-isomorphism of H onto G, the projection
(1 —2) in (2.4) must be nonzero. For if the projection 2z is the
identity in G @, M, then v in (2.5) is an isomorphism of H @, N
onto G@.M, so I is an isomorphism, which is a contradiction.
Taking the central support of (1 —2) in w (M) as (2.7), ¢ is an
anti-isomorphism of H onto G such that a;;-1,°6 = 6-3, for all he
H. 1If I is an isomorphism, ¢ is an isomorphism such that a;, 0 =
fo73, for all he H.

Conversely suppose I is an isomorphism of H onto G such that
0o8;, = a;u°B, for all he H. Then there exists an isomorphism I”
of HQ; N onto G @, M such that I'(z,(y)) = 7. (0(y)) for all ye N
and I'(Ay(h)) = N(I(h)) for all he H (ef. [9] Proposition 3.4). Then
the transposed map ¢ of I is an isometric isomorphism of F(G; M,)
onto Fy(H; N,).

Suppose I is an anti-isomorphism of H onto G such that #-3,=
o;-y08 for all he H. Considering the opposite von Neumann algebra
M° of M and the isomorphism J of H onto G by J() = I(h™") for
all he H, there exists an isomorphism I" of H@; N onto G Q. M°
such that I'(z,(¥)) = 7.(0(y)) for all ye N, I'(Ay(h)) = Ne(J(h)) for all
heH. On the other hand, G @®.M° is isometrically isomorphic to
G ®.M as Banach spaces, therefore I' is a o-weakly continuous
isometric linear map of H@; N onto G @, M. Then the transposed
map ¢ of I' is an isometric isomorphism of F,.(G; M,) onto Fy(H; N,).
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