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1. Introduction. Let U = {z:|z] < 1} and .&” the set of funec-
tions f, f(z) = z + a,2* + ---, that are analytic and 1: 1 in U. Denote
by o the collection of support point functions of &7, i.e., functions
fe.” that satisfy

Re L(f) = max Re L{g)

for some nonconstant continuous (in the topology of local uniform
convergence) linear functional on .&“. Finally, denote by E(S”) the
set of extreme point functions of .&~.

It is well known that if feoUE(Y), then f(U) is the comple-
ment of a single Jordan arc extending from some finite point to <
and along which |w| is strictly increasing. Indeed, this has been
demonstrated for the class E(%”) by L. Brickman [1] and for the
class ¢ by A. Pfluger [5] (see also L. Brickman and D. Wilken [2]).
Consequently, if feo U E(5”), there is a Loewner chain

f(z,t) = e’[z + i:‘,z a%(t)z”i\ 0t < o)

with f(z, 0) = f(2) and f(z, t,) subordinate to f(z, t,) if 0=<t,<t,<<oo
(see |6, p. 157]). Note that e7if(z,t)e . Let w(z, t) =e (2 +
by(t)2* + by()2* + - -) be analytic for te{t:0 < ¢ < o} and ze U, 1:1
in U with |w(z, t)| <1, and such that f(2) = f(w(z, t),t) for each
te{t:0 <t < } and all ze U. Observe that we define %W(z, ¢) =
ew(z, t) = z + by(0)2* + -+ €.5° and that |W(z, t)| < e for ze U.

In §2 it is shown that if fe E(5”), then ¢7'f(z, t) € E(S”) and
also that if feo, then ¢7'f(z, t)eo. This latter result is a generali-
zation of a theorem due to S. Friedland and M. Schiffer [3, p. 143].
Also, in the process of generalizing this theorem a fairly easy
method is established for finding for each ¢, 0 < ¢ < o, a continuous
linear funectional which e¢~'f(z, t) maximizes.

2. Preservation of the sets ¢ and E(5”) under the Loewner
variation. It is easy to show that if feE(%), then e 'f(z,t)€
E(%) also. Indeed, if this were not the case, then there would
exist distinct funections f;, f,€.9” and M, N, > 0 with A, + A, =1 for
which N, fi(2) + N fo(2) = e7f(2,t). This would imply that e, fi(w(z,
1)+ e fi(w(z, 1) = f(w(z, t), t)=f(2z). Since e’fi(w(z, t)) and ¢’ fy(w(z,1))
are in &, the fact that f(z) e E(S) is contradicted and therefore
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e f(2,t) e B()0 £t < o0).
The following theorem contains the analogous result for the
class o.

THEOREM. Let feoC.%”. Then e 'f(z,t) €0 for all t such that
0=t< oo.

Proof. Since feo, there exists a nonconstant continuous linear
functional, L, for which
Re L(f) = max Re L(g) .
g€

At this point we need a representation theorem due to O.
Toeplitz [7].

THEOREM (Toeplitz). Let f(2) =2+ a,2* + ---€.9”. Then L(f)
is a comtinuous linear functional on & if and only if there exists
a sequence {b,} with lim sup, . |b,["" <1 such that L(f) = S5, a,b,.

Now, f(z)=f(w(z,t), t) where e'w(z, t)=w(z, t)=2+ b(t)z+ --- €
& and |W(z,t)| < e for ze€ U. Since

Fw(z, t),t) = e'[w(z, 1) + a;(O)w(z, t) + -+ + a,(B)w (2, t) + - -]
= W(z, t) + a,(t)e 'z, t) + -
+ an(t)e_(n—l)t n(z, t) + .- %y

and if L(f) = >\x. a,b,, then it follows that

i ab, = ZO; [5,,5” + az(t)e_‘l;,ﬁz’ + as(t)e b +
- a,,(t)e“""”‘l;(”)]b,,

i [Z a (t)e—‘(k—l)tb (k)b :l

n=1

I

where b/ is the wth coefficient of Wz, t) = [z + by(t)2* + ---]-.
However, since #*(z,t) is analytic in U and bounded by e*, it
follows from Cauchy’s formula that

I(’,‘(k)] — ‘ S W*(e, t)de l — ‘ Szx w*e”, ) de
" omi Jiel=1 gmH or et
= LSM Iwk(ew, t)] de < okt
21 Jo
for all n=1,2,---. Also, since e 'f(z,t) = 2z + a,(t)z* + -+ € .57,

it follows from Littlewood’s theorem [4] that |a,(¢)| < ke. There-
fore,
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i ~ n
3 la e F 1 Pp, | < |ke-e”F TV gk, |
k=1 k=1

= etV |p, | (W/(n;‘ 1) ) .

Notice also that lim sup,_.. |tV b, -n(n + 1)/2]Y" = lim SUpP,-. | 0. "<
1. Consequently, the double summation, S\, [SV2_, a,(t)e™* 2t .®b,],
converges absolutely and therefore the order of summation can be
reversed and one obtains

i ab, = 2 [ ,i_' ak(t)e—m—l)cgémbn:l
= 3| 5 ate b0, |
k=1 n=k
< < B —(k=1)t
- k%[;:k b®b,e :]a,,(t) :

Now, for fe.&” define L,(f) = D Cios b #p,e~*1tq,. From the
theorem of Toeplitz it follows that L, will be a continuous linear
functional on & provided that

. 1k
lim sup

k—oo

<1.

RN 2
Z b’i )bne (k—1)¢
n=k

Since lim sup,_., |b,]"* = p < 1, there exists an N and an 7 such that
o<r<l and [b,|<7r* for all k= N. Therefore, | > bPb,e"* ik
(¥t gm0t N0 L pMVE = ¢¥*p/(1 — 9)V* for all k= N. Since

: tik r e
hrrkxaswup l:e (1_—?”)1/;] =r <1,
it follows that lim sup,... | Sy b.Pb,e F 0tk < g < 1,

Since Re L(f) = Re O 5-. a,b,) is a maximum for the class &7,
it follows easily that Re L,(e*f(%, t)) is also a maximum for the class
.. In order to see this one needs only to observe that if f and
F are any two functions in .° related by a relation of the form
F@) = e'f(w(z, t)), then L(f) = L,(f). This completes the proof of
the theorem.

REMARKS. Since f(z) = f(w(z, t),t) for some w(z,t), one can
express L,(e”'f(z,t) = D Ol bb,e~* g, (t) in terms of the
coefficients of the functions f(z2) and e¢~if(z,¢). This can easily be
done provided that L(f) (L(f) = 3. a,b,) does not contain too
many terms. Then for each ¢, 0 < t < oo, the corresponding Schiffer
differential equation which ¢7'f(z, t) must satisfy can then be com-
puted with little difficulty. Unfortunately, extracting useful infor-
mation from these new equations is not an easy task.
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Suppose, however, that it is known that Re L(f) is a maximum
for the class & when f is one of the Koebe functions, f(z) = z/
(1 — eY2)*(0 £ § < 2m). Then since e~'f(z,t) = f(#) in this case, it
follows that Re L,(f) is a maximum for the class & for all ¢ (0 <
t < o). From this one can establish a one parameter family of
new coefficient inequalities for the class .. 8. Friedland and M.
Schiffer [3, p. 149] have done this for the case where L(f) = a,.
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