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We give two short proof of a weak version of the
theorem of Laudenbach, Poenaru [3]. Also we show that
an embedded S1 X S2 in S4 bounds a copy of B2 X S\ Finally
we establish that if W is a smooth 4-manifold with dW =
ϋvS1 X S2 and W is built from fin^B2 x S2 by attaching a
2-handle, then W is homeomorphic to #nJ52 x S2.

!• 4-Dimensional handlebodies* Let X, Y be the following

smooth 4-manifolds:

X = #,£3 x S1 and Y - #%JS2 x S2 .

In [3] it is proved that if h: dX->dY is a diffeomorphism, then the
smooth closed 4-manifold X \Jh Y which is obtained by gluing along
h, is diffeomorphic to S\

We begin with two brief proofs, one using the Dehn's lemma
in [5] and the other employing unknotting in codimension 3, of the
following result:

THEOREM. Let X, Y, h be as above. Then X\Jh Y is homeomor-
phic to S\

Proof. (1) Let {#J x S 1 be a circle in the boundary of the
ΐth copy of J53 x S1 in the connected sum X = %JB* x S\ for 1 ^
i <, n. Without loss of generality, all the loops {#J x S1 can be
assumed to miss the cells which are used to construct X as a con-
nected sum. By the Dehn's lemma in [5], it follows that all of the
circles h({xt} x S1) bound disjoint smooth embedded disks Dt in Y,
for 1 ^ i ^ n.

Let N(Dt) denote a small tubular neighborhood of Dt in Y.
Clearly X \Jh (N(A) U U N(Dn)) is diffeomorphic to B\ since N(Dt)
can be thought of as a 2-handle which geometrically cancels a 1-
handle of X. On the other hand, let W denote the closure of Y —
N(DX) - . . . - N(Dn). Then dW - S* and W is contained in Y which
can be embedded in S\ By the topological Schoenflies theorem [1],
W is homeomorphic to B\ Consequently X\Jh Y is homeomorphic
to S 4 U S 4 = S\

(2) By Van Kampen's theorem, π,(X \Jh Y) = {1}. Let Z be
a bouquet of n circles which is embedded in X and is a deformation
retract of X. By isotopic unknotting in codimension 3, Z is con-
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tained in the interior of a PL 4-cell B in X \Jh Y. Therefore, by
an isotopy we can shrink X down towards Z until X is included
in intl?. Exactly as in (1), by the topological Schoenflies theorem
we obtain that X \Jh Y — int B is homeomorphic to B* and so the
result follows.

REMARK. Note that if the PL or smooth 4-dimensional Schoenflies
theorem was known, then these arguments would establish that
-3Γ \Jh Y is PL isomorphic or diffeomorphic to S\

2* Embeddings of S1 x S2 in S\ The following result was
first proved by I. Aitchison (unpublished). We present a simplifica-
tion of his method, which again uses the Dehn's lemma in [5].

THEOREM. Let h: S1 x S2 -> S4 be a smooth embedding. Then h
extends to a topological embedding of B2 x S2 in S4.

Proof. Let V, W be the closures of the components of S4 —
h(Sλ x S2) (by Alexander duality there are two such components).
By the Mayer-Vietoris sequence, without loss of generality the in-
clusion hiS1 x S2)-> V induces an isomorphism H^hiS1 x S2)) -> Hx( V)
and H,(W) = 0.

Let G denote the group which is the pushout of the homo-
morphisms πMS1 x S2)) -^ πx(V) and πMS1 x S2)) -*π,(W). By
Van Kampen's theorem, G = {1}. On the other hand there is a
homomorphism of G onto πx{ W) induced by the epimorphism πx{ V) ->
HX(V) ~ HMS1 x S2)) = πMS1 x S2)). Consequently π,(W) = {1}
follows.

Now we can apply the Dehn's lemma in [5] to obtain that
h(Sλ x *) bounds a smooth embedded disk D in W. Let N(D) be a
small tubular neighborhood of D in W. Then the closure of W —
N(D) is a topological 4-cell, by the topological Schoenflies theorem
[1]. Therefore W is homeomorphic to J?2 x S2 and h extends to a
topological embedding of B2 x S2 as desired.

REMARK. This result is analogous to the classical theorem of
Alexander that any smooth embedded S1 x S1 in S3 bounds a smooth
solid torus B2 x S1.

3* Handle decompositions and slice links* In [2], Kirby,
Melvin proved that if a smooth 4-manifold M has boundary S1 x S2

and is constructed by attaching a 2-handle to B4 along a curve C
with the 0-framing, then M is homeomorphic to £ 2 x S2 and C is a
slice knot. We prove the following generalization of their result:
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THEOREM. Let W be a smooth 4-manifold which is obtained by
adding n 2-handles to B* along the curves Cu , Cn. The 2-handles
induce a framing of the link Cx U U C r Assume that framed
surgery on the sublink CΊ U U C* in SB yields faS1 x S 2 , for all
i with l^i^n. Then W is homeomorphic to §nB

2xS2 and CΊU UCn

is a slice link.

COROLLARY. Let W be a smooth ^-manifold such that dW is
diffeomorphic to §nS

x x S2 and W is built by attaching a 2-handle
to %n^B2 X S2. Then W is homeomorphic to %JB2 x S2.

Proof of theorem. By the assumption that surgery on the link
Cλ U U Cn gives $nS

ι x S2, it immediately follows that dW is
diffeomorphic to ^ S 1 x S2. If the handle decomposition of W is
turned upside down, then W is constructed by attaching n 2-handles
to (j^S1 x S2) x I along some curves C[ x {1}, C2 x {1}, , Ci x {1}
and then adding a 4-handle. We will assume that the 2-handle glued
along d x {1} is dual to the 2-handle added along Ct to B\

Let Wi or W- denote the 4-manifold which is obtained by ad-
joining i 2-handles to J54 or (^S1 x S2) x I respectively along the
curves Cu , Ct or Ci_i+1 x {1}, , C'n x {1} respectively. Then dW€

is diffeomorphic to ^ S 1 x S 2 , since surgery on d U U C< gives
^ S 1 x S2. Also W — int Wl is diffeomorphic to Wn-t and therefore
W[ is a cobordism between #wS2xS2 and fi^S'xS2. Note that W[
can also be constructed by adding n~i 2-handles to (%n_iS

1xS2)xI.
Let {C} denote the homotopy class of a loop C relative to some

base point and let <*> denote the normal closure of the set of ele-
ments * in some group. By Van Kampen's theorem applied to the
two handle decompositions of Wί, we conclude that

= π^S1 x

and πx(Wί) has rank <^ n — i. Consider the case when i — 1. By a
classical theorem of Whitehead (see Exercise 20 on p. 283 of [4])
and by Corollary 5.14.2 on p. 354 of [4], it follows that π^Wi) is
free and {(%} is primitive, i.e., is contained in a free basis of the
free group π^β1 x S2).

Next, π^WO has a presentation consisting of a set of free
generators of πλ{W[) = π^S1 x S2)/<{C;}> and the one relation {CU}
Hence by the results on p. 283 and p. 354 of [4] again, π^Wί) is
free and {C _̂J is primitive. Therefore we obtain that {{CLJ, {C'n}}
is contained in a free basis for TΓ^^S 1 X S2). Continuing on with
this argument, we conclude that {{C[}, * ,{Ci}} is a free basis of
ftiiftnS1 x S2). So by Lemma 2 of [3], there is a diffeomorphism h:
^S1 x S2 -> ̂ S 1 x S2 such that hiS1 x {x,}) is homotopic to C[ for
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all i9 1 <̂  i <; n, where S1 x {#J is contained in the ith copy of
S1 x S2 used to form jj^S1 x S2 and is disjoint from the 3-cells
employed for the connected sum.

Let M be the smooth 4-manifold with dM = Sz which is built
by adding n 3-handles and 4-handles to Wή, using the component
(JkS1 x S2) x {0} of dW'n. The 3-handles can be attached along the
2-spheres h({yt} x S2) x {0}, for 1 ^ i ^ n} where {yt} x S2 is in the
ith. copy of S1 x S2 used to obtain #USX x S2 and {y%) x S2 misses
the 3-cells utilized for the connected sum. Turning the 3- and 4-
handles of M upside down, we find that M can be constructed with
a 0-handle, n 1-handles and n 2-handles. Note that each 2-handle
of M algebraically cancels one of the 1-handles, since C\ is homotopic
to hiS1 x {xt}).

The Mazur trick can now be applied. M x / is a 5-manifold
composed of a 0-handle, n 1-handles and n 2-handles. By the
Whitney trick, the 2-handles geometrically cancel the 1-handles.
Consequently M x I is diffeomorphic to Bb and 2M = d(M x /) is
diffeomorphic to S\ By the topological Schoenflies theorem [1], M is
homeomorphic to J54.

Let N denote the smooth closed 4-manifold which is obtained
by gluing a 4-cell to M along dM = S\ Then N is homeomorphic to
S\ Since N = W U %nB

z x iS1 it follows that W is homeomorphic to
%J52 x S2, either by, isotopic unknotting in codimension 3 or by
using the Dehn's lemma in [5] plus the topological Schoenflies
theorem as in §2. This proves the first part of the theorem.
Finally, exactly the same argument as in [2] applies to show that
Ci U U Cn is a slice link.

Proof of corollary. If W satisfies the conditions of the corollary,
then W can be constructed by adding n 2-handles to i?4 along the
curves Clf , Cn where C1 U U Cn^ is a trivial link of n — 1
components in S3. Hence W satisfies the hypotheses of the theorem
and so W is homeomorphic to %nB

2 x S 2 .

Note. I would like to thank C. F. Miller for very helpful advice
on the group theory in the above theorem.
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