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As an application of the integral module representation
we investigate the multiplicity function in the sense of
Bade for Boolean algebras of Lr-projections. In the case
of finite multiplicity and the restriction of the multiplicity
function to invariant subspaces we obtain results which
have no analogue in the case of arbitrary Boolean algebras
of projections.

0. Introduction. Let X be a fixed real Banach space and p a
fixed number, 1 < p < . An L*-projection is a continuous pro-
jection E: X — X such that ||z ]|? = || Exz||® + ||z — Ex||* for all x e X.
Lr-projections have been investigated in [3], [4], [5], [8]-

We consider a fixed complete Boolean algebra, say <2, of L’-
projections on X (for definitions, in particular that of the multipli-
city funection, see §1 below). First, we give a short survey of the
integral module representation which was introduced in the thesis
of the second-named author ([8]). We use this representation to
obtain results concerning the relationship between pairs of eclosed
subspaces invariant w.r.t. <& - the <#Z-cycles. The main result in
this connection is the following: If M is a “F-cycle and = an
element of X, then there is a z¢ X such that (M + S(x))”" = MP
S(z) whereby S(x) denotes the smallest <#-cycle containing x. It
follows that {in the case of finite multiplicity » there are vectors
Xy ror, &, With X = S) P --- @ S(x,). This is in marked contrast
to the case of arbitrary Boolean algebras of projections, where there
is a Banach space X containing vectors x, and x, such that X =
(S(x,) + S(x,))~ but in which it is impossible to find vectors ¥, ¥,
with X = S(y,) + S(y,) (see [6]).

The case of finite multiplicity will be treated in some detail in
§4. It turns out that in this case the space X may be arbitrarily
well approximated by finite families of Bochner spaces L*(V: p)
with finite-dimensional V.

The last section is devoted to the restriction of the multiplicity
to invariant subspaces, i.e. cycles. There seem to be no results in
this direction in the general case (e¢f [7], p. 2289). We shall show
that, for LP-projections, the multiplicity function behaves as one
would expect, i.e., the multiplicity of a cycle is less than or equal
to that of the whole space. Partial results concerning the multipli-
city of adjoints in dual spaces have been excluded in order to avoid
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the technicalities which are involved (e.g., the dual integral module
representation).

1. Preliminaries.

Boolean algebras of LP-projections. The concept of an L’-pro-
jection was defined in the introduction. The range space of such a
projection is called an LP-summand. For the basic properties of
L -projections and L’-summands, the reader is referred to [4]. Note
that X=X @, X. P, --- @, X, is a short way of indicating that
the X, are LP-summands with X, N X, = {0}t # J) and X = X, +
X, + - + X, — it follows that |jx, +- -+ 2,/ = ||2]]"+-- -+ |2,]]?
if x,e X, for all 1.

It is known that for p # 2 every pair of L*-projections commute
[3]. It follows that the set of all L’-projections is in this case a
complete Boolean algebra of projections in the sense of Bade [1] (i.e.,
an increasing net converges to its supremum, in the strong operator
topology). We shall consider the more general case in which <7 is
a fixed complete Boolean algebra of Lrf-projections for some p,
whereby the case p = 2 is not excluded and we do not assume that
this algebra containg all the L’-projections.

A -summand is an L*-summand whose corresponding L*-pro-
jection lies in .<#. For the general properties of these summands
and of Boolean algebras of projections we refer the reader to [4]
and [1]. We need the following facts and definitions:

(a) There is a compact Hausdorff extremally disconnected space
Q2 such that the elements of .22 correspond to the clopen subsets
of @ (2 is just the Stonean space of <#). By E, we mean the
element of <% which corresponds to the clopen set D.

(b) The Banach algebra generated by .=, (lin.<Z)", is called
the Cuningham algebra of <z and is written «’,. It is isometri-
cally isomorphic to C(2), the Banach algebra of continuous functions
on Q is such a way that E, corresponds to X, for each clopen set
D in Q. For Te .~ , we write T for the associated function in
C(Q).

(¢) For every Borel measurable function on £ there is a
(uniquely determined) continuous numerical valued function on 2
such that these functions coincide on the complement of a set of
first category. Each Borel set in Q is the symmetric difference of
a clopen set and a set of first category.

(d) For each ze X we define o, (D): = |[|E,x||” for all clopen D
in 2. p, can be extended to a regular Borel measure on 2 which
we also write p,.

(e) If D is a clopen subset of 2 we say that D satisfies the
countable chain condition (CCC) if each strictly increasing chain of
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clopen sets in D is at most countable (equivalently: each family of
disjoint clopen subsets of D is at most countable). In this case we
shall also say that the corresponding projection E satisfies the CCC.

It is easy to see that supp p, satisfies the CCC since p, is finite.
It follows that Q is the supremum of a family of clopen subsets
each of which satisfies the CCC. We can thus restrict ourselves to
the case where 2 and I themselves have this property.

(f) For Y c X there is a smallest projection E such that Ey=
y for all ye Y (the carrier projection of Y). Note that if FAE=0
then F'Y = {0}. If Y = {x}, we shall write E, for this projection.

(g) We note that with the notation of (d), (e), (f) the following
conditions are equivalent:

(i) &£ satisfies the CCC.

(ii) there is an x e X such that supp p, = 2.

(iii) there is an x € X such that E, = I.

Following [8] we call a closed subspace of X which is invariant
w.r.t. all projections in <% a <Z-cycle. It is easily verified that
the intersection and the closed linear hull of arbitrary collections of
Z-cycles are again .<Z-cycles. It follows that there is for each
xe X a smallest <Z-cycle containing x. This cycle is the closed
linear hull of {Ex | F e <#} and is written S(x).

Multiplicity theory. The cycles of the form S(x) behave in
many respects as one-dimensional subspaces (cf. f. ex. [4], Satz D1).
The aim of multiplicity theory is to investigate a “dimension” with
respect to the projection algebra, using the S(x)’s as building blocks.
If the projection algebra is the trivial one, consisting of 0 and I,
multiplicity theory is simply dimension theory. If, as in our case,
the projection algebra consists only of Lr-projections, multiplicity
measures, in some sense, how close X behaves as an abstract L*-
space. In §4, for example, where we discuss the case of finite
multiplicity, we shall see that X behaves almost as a space L*(V;
/), which is the natural generalization of the Lr*-spaces. Following
Bade ([2]) we define:

DEFINITION 1.1.

(i) &:={F|EeF, E satisfies the CCC}.

(ii) For Ee®, m(E) (the multiplicity of E) is defined by
m(K): = inf {Card I | there exists a family (x,);., in EX such that
(lin (UiEI S(xz))_) = EX}.

(iii) m(-) is extended to the whole of <& by means of m(E): =
sup {m(F) | F < E, Fe '} for Ee &%.

(iv) For Eec.<Z the multiplicity of E is said to be uniform,
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if m(F)= m(K) for all Fe<#, 0+ F < K.

Clearly, from the definition, m(E) = m(¥|;y) whereby the
second multiplicity is calculated in the Boolean algebra <#-E. Also,
by (iii), the multiplicity is completely determined by those E which
satisfy the CCC. It follows that any procedure for calculating the
multiplicity of the identity on spaces where it satisfies the CCC can
be used to calculate the multiplicity of an arbitrary projection on
an arbitrary space. We shall sometimes use this fact to simplify
our proofs.

For a discussion of the properties of the multiplicity function
we refer the reader to [2]. In particular the following properties
hold:

ProprosIiTION 1.2.

(i) m(0) = 0.

(ii) m is monotone and m(sup;., £;) = sup;., m(K;) for every
Samily (B));.; in Z.

(ili) There is a disjoint partition of <Z into a family (E.),
indexed by a set of cardinals, such that each E, has uniform mul-
tiplicity ¢ (by “disjoint partition” we mean that the E, are pairwise
disjoint and sup K, = I). Note that this partition corresponds to
a disjoint family (2.) of clopen subsets of 2 with (U 2,)” = Q.

Suppose that M is a .“#-cycle. By restriction, <& induces a
complete Boolean algebra of L*-projections on M. If we denote the
multiplicity function on the restricted algebra by #, it is natural
to expect that Wm(E|,) < m(E) for Ec.<Z. We shall see in §5 that
this is indeed true.

Since S(x) = {Tx| T e % .}”, the multiplicity of E corresponds to
the dimension of EX as a normed % ,-module in the case where F
satisfies the CCC. If E does not satisfy the CCC then the dimen-
sion of EX is generally larger than the multiplicity of E.

2. The integral module representation. In this chapter we
shall describe without proofs the representation of X as a space of
vector-valued functions on 2 such that the elements of .<Z have the
form of multiplication by characteristic functions which was intro-
duced in [8]. We shall only treat a special case which is general
enough for our purpose, namely that where 2 satisfies the countable
chain condition. For the general case and a complete description
of the construction, see [8], [5].

As before, let <7 be a complete Boolean algebra of L”-projec-
tions on the real Banach space X. We assume that 2 satisfies the
countable chain condition. Thus there is an element x in X such
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that Ex == 0 for all E+ 0 in <&, wlog ||z|] = 1 (see introduction).
Let y be some element of X. Since supp p, = 2, the measure p, is
absolutely continuous w.r.t. p,. Thus there is an L'(o,)-function fv
on 2 such that p, = f'0,. As every p,-measurable function is
almost everywhere equal to some unique continuous function on 2,
we can assume that f* itself is continuous. Note that f¥ = 0 and
is finite almost everywhere.

We denote by C*?(2, p,) the space of continuous numerical p-
integrable functions on the measure space (2, o,) with the obvious
structures of addition and multiplication by C(2)-functions. ||g}|,
denotes the LP-norm of an element in C?(2, p,). Now, if we set
[¥]: = (fv)"?, the mapping ¥ — [y] maps X into C?(2, p,). This map-
ping has the following properties:

LeMMA 2.1.

(1) llyll = ll[ylll, for all y in X.

(i) [Tyl=|T|[y) for T in 5 and y in X.
(iii) [y + 21 = [y] + [2] for y, 2z in X.

These are the defining properties of a norm resolution.

By 2.1 (ii) and (iii) the mapping ¥ — [¥](k) is, for each %k in £,
a semi-norm on Y,: = {y|y in X, [y](k) < =}, a linear subspace of
X. Let X, be the associated Banach space, i.e., the completion of
Y. /{v | [yl(k) = 0} in the norm ||-||, induced by ¥ +— [y](k). This con-
struction provides us with a family of Banach spaces indexed by
the points of 2. The p-direct integral of this family over £ with
respect to o, Sz X, dp,, is the set of all mappings f: 2 — J, U{e}
such that f(k) lies in X, U {c} for each %k and for which the scalar-
valued function ki || f(k)|[(|| oo ||:=0c<) lies in C?(2, p,). A p-direct
integral is not, in general, closed under addition so that it cannot
be given a natural vector space structure. However a subset Z of
the p-direct integral for which the following properties hold:

DEFINITION 2.2.

(1) For all f, g in Z there is an h in Z with fk) + gk)=nk)
wherever f(k) and g(k) lie in X,.

(ii) For all fin Z and g in C(2) there is an h in Z with g(k)-
fk) = h(k) wherever f(k) lies in X,

can be given a natural C(2)-module structure since continuity implies
that the 2 of 2.2 is unique.

If, further:
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(iii) For each k, X, = {f(k) | fe Z, f(k) 5= oo}
(iv) Z is complete in the norm N(f): = [|({| F() ),
we call Z an integral module.

If we now map X into Sp X, dp, by means of y+ {y) whereby
2

{y>(k): = the equivalence elass of ¥y in X, if [y](k) <
D= o if [yl(k) =

all the structures of X are transferred to the range space so that
2.2 (i), (ii) and (iv) are automatically satisfied and (iii) follows
from the definition of the X,. We thus have the following repre-
sentation theorem:

THEOREM 2.3. Let X, <%, 2 and x be as above.
There 18 a family of Banach spaces X,, indexed by the points
of 2 such that X is isometrically isomorphic as a C(2)-module to

an integral module in Sp X, do,. (X is a C(Q)-module by wvirtue of
CQ) == ). i

The most important advantage of the integral module repre-
sentation is of course that the operators in %, now correspond to
the pointwise multiplication by continuous functions. In particular
a projection in <# has the action of restriction to the corresponding
set in Q.

Since we are interested in .#-cycles in X we need to know
how these look in the integral module representation. As is to be
expected they turn out to have a particularly simple form.

ProPOSITION 2.4. Let (-): X — SpXkdpx be the representation of
Q

2.3,

If M is a <#-cycle in X then:

(1) M = {{yk) | {y>k) + =, yec M} is a closed subspace of
X, for each k.

(ii) If y is an element of X then y 1s im M if and only if
yyk)y e My, U {o} far all k.

(iii) For each natural number m the set {k|dim M, = n} is
clopen in Q. In particular the set supp M: = {k| M, = {0}}~ is clopen
and corresponds to the carrier projection of M.

Proof.
(i) That M, is a subspace is clear, since {ay+bz)(k)=aly)(k)+
b(z>(k) -for a,b in R, y,z in M. It remains to show that M, is
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closed. Suppose that y* is in X, with <{y,>(k) — y* for some sequence
{y,} in M. We suppose that in addition ||<{¥,+ k) — Y. E)|l, =
[Yusr — ¥al(k) < 1/2"+* for each n. Set z, = y,. Since [y,—y,|(k)<1/4
there is a clopen set D, containing ¥ on which [y, — ¥,] £ 1/2. Set
2, =Y, + Ep (¥, — v). Then [z, — 2,] =< 1/2 and {z,)(k) = {y,)(k). By
induction we obtain a sequence {z,} in M with [z, — 2,] < 1/2* and
(2.>(k) = {Y,)(k) for each n. Thus {z,(l)} converges uniformly on 2,
in particular {z,} converges in M to z with <{z)(l) = lim <{z,>(l) for
each 1. Since <z,)(k)=<y.>(k) for all » we have {(z)(k)=Ilim {y,>k)=
y*®. Thus M, is closed.

(ii) Suppose that y is in X and that {y)(k) e M, U {} for each
k. Let ¢ >0 and E, be such that ||E,y — y|| <e and {(y)(k)e M,
for k& in D. Then there is for each k in D a 2, in M with {z,)(k)=
(y)(k). Let D, = D be a clopen set containing £ on which [z,—y]<
¢. Then D is covered by finitely many D,’s, say D,, ---, D, corres-
ponding to k, ---, k,. Wlog we may assume that the D,’s are
disjoint. Put 2 = E 2, + -+ + E, 2, € M. Then

1/p

Iz = Byl = (| [z — vrdp.) " = (2 |olzs, — vrd,.)

=@E)r=e.

Thus ||z — ¥|| < 2¢. Since ¢ was arbitrary and M is closed we have
yeM.

The ‘only if’ part follows immediately from the definition of
M,.

(iii) The continuity of [y — z] for y,z in M implies that if
[ yy(k) — <{z>(k)||. > ¢ for some k then [[{y)() — (z)(D)|l; > ¢ for all
[ in some clopen neighbourhood of k. Using this and a standard
argument invoking the compactness of the unit ball in a finite-dimen-
sional space we obtain: If y,z2,---,2, are in M and d(y)(k),
lin {<z,)(k), - - - {2 (k)}) > € for some k then d(<yy(), lin {<z1), ---,
ZaoD}) > ¢ for I in some clopen neighbourhood of k. It follows
that if <z &%), ---, (z.>(k) are linearly independent for some % then
(o), -+, (#ap(l) are linearly independent in some neighbourhood
of k. Thus for each n the set {k|dim M, = n} is open. Let k, be
a point in the closure of this set and suppose that dim M, = m<n.
Let z, -+, 2, in M be m elements such that {(z)(k,), -+, z.>k,) is
a basis for M,. Let A= {z]|zeM, [z] =3, d({z)(k), lin {{z)(k), - - -,
(B} = [2](k)/2 = 1/2 wherever [z](k) + 0}. We order the elements
of A by means of z <2 if and only if <{2)(k) = {z'>(k) wherever
(k) # 0. If {2.«cs is a totally ordered chain in A then it con-
verges to an element z, in M which also satisfies the defining condi-
tions of A. Clearly z, is an upper bound for the chain so that we
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can apply Zorn’s Lemma to obtain a maximal element in A, say z.
Since <z,)(ky), -« -, {#my(k,) span M,, {z)(k)=0. But [z](k) =1 where
{z)(k) # 0 so, by the continuity of [z](k), we have that {z)(k) =0
on some clopen neighborhood D of k,. Let k be a point in D with
dim M, = n. Then there is a 2z’ in M with [2'](k) = 2 and d({z")(k),
lin {<z) k), - - -, {zaoE)}) > 3/2 > [2'](k)/2. By continuity there is a
clopen set D, & D containing % such that E,z" lies in A. But then
2+ Epz lies in A and is strictly larger than z. Since this is a
contradiction it follows that dim M, = n. Thus {k|dim M, = n} is
clopen for all n. Since {k|dim M,=n}={k|dim M, = n}\{k|dim M,=
7 + 1} this set is also clopen for each %n. supp M = {k|dim M, = 1}
and is therefore clopen. That it corresponds to the carrier projec-
tion of M is trivial.

By applying 2.4 (i) to X itself we immediately obtain:

COROLLARY 2.5. For all ke 2, and y* in X, there is a ye X
with {y)(k) = y*, i.e., the completion in the definition of X, is super-
Auous.

The Zorn’s Lemma argument of 2.4 (iii) occurs over and over
again when working with integral modules. In order to save
repeating it each time it is formulated in the following lemma for
which we need a preparatory definition.

DEFINITION 2.6. Let X, ©#Z be as above and % a natural number.

QS(X*, Z): = {(, -+, 2,; F)|2,e X, Fe <& and E,,
= F for all 4} .

THE EXISTENCE LEMMA 2.7. Let A be a subset of QS(X", .#)
for which the elements of X which occur are bounded im norm and
let Ee.# satisfy the countable chain condition. If

(i) For each F in <#,0 = F < E there is an a: = (a,, -, @,;
F)in A with 0 F, < F.

(ii) Whenever {F,} /' F < FE and a is an element of @S(X", &)
such that F.a: = (F.a, ---, Foa,; F,F,) is in A for all a then Fa
18 also in A.

(iii) Whenever a and a' are in A and F.F, = 0 then a + a’:=
(a, + a;, ---,a, +an; F, + F,.)) is in A.

Then there is an element a in A with F, = K.

Proof. We order the elements of A by means of ¢ < o’ if and
only if F, < F,, and a;, = F.a; for all 7. Let A4, be the set of all
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a in A with F, < E. A strictly increasing totally ordered chain in
A, can be at most countable since E satisfies the countable chain
condition, say a’, ---, a™, ---. By the boundedness in norm of the
elements occurring in A4, ai}, a}, ---, a?, ---, is a Cauchy sequence for
each i and converges in X to an element a,. Clearly a: = (a, ---,
a,;sup F,») is in QS(X", &) and F,a =a™ for each natural
number m. By (ii) @ is in A and is an upper bound for the chain
a, ---,a", ---. Since F,» < E for each m, ¢ is in 4,. By Zorn’s
Lemma A, contains a maximal element. By (i) and (iii) the projec-
tion in this element must be E.

Note that it is not essential for the validity of the existence
lemma that <# consists of L?-projections (although that is of course
the case in the present paper). It suffices that the norm bounded-
ness implies that every sequence in which each element is an
extension of the previous one is Cauchy. In practice we shall only
use the cases » = 1 and n = 2 and shall normally only verify (i),
leaving it to the reader to check that (ii) and (iii) are trivially
satisfied. If the elements of A are characterized by some property
then verifying (i) corresponds to showing that the set of projections
for which it holds is co-final in every ultrafilter containing FE. The
existence lemma then allows us to conclude that the property holds
for E itself.

3. Distance functions. If y is an element of a Banach space
Y and M a subspace, the distance of y from M, d(y, M) is
inf,.x|ly + m||. This well-known distance function suggests the
following definition of the distance between two subspaces of Y:

DErFINITION 3.1. The distance between two subspaces M,, M, of
a Banach space Y,d(M, M, is inf{||m, + m,|||m,e M, m,e M,
max {||m. ||, || m.||} = 1}, whereby we define the infimum of the empty
set to be unity.

Clearly, if d(M,, M,) = d, we have [|m, + m,|| = d||m,|| and =
d||m,|| for m,e M, m,e M,. This distance function takes values in
[0, 1].

ProPOSITION 3.2. Let M, M, be closed subspaces of Y.

(i) If M,N M, = {0} then d(M,, M,) = 0.

(ii) dM,, M,) > 0 if and only +f M, N M, = {0} and M, + M, s
closed.

Proof.
(i) Trivial.
(ii) The ‘only if’ part is trivial and the ‘if’ part follows from
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the closed graph theorem.

We are, of course, interested in the case where M, and M, are
& -cycles in a Banach space -X. (&7 as in the foregoing section.)
We have seen in the last section how M, and M, define families
(M), and (M,), of subspaces of the spaces X, in a given integral
module representation. The next proposition relates d(M;, M,) to
the distance between these subspaces.

PrROPOSITION 3.3. Let M, M, and M, be <Z-cycles in a Banach
space X and ye X.

(1) d M, M,): = d((M,), (M,),) is continuous as a function of
k.

(11> d(Mly Mz) = inf, dk(Mly Mz)

(iii) d,(S(y), M) vanishes on a monvoid clopen subset of 2 if
and only if S(y) N M =+ {0}.

Note. 3.3 (iii) does not necessarily hold for two arbitrary .<Z-
cycles.

Proof.

(1) Suppose for some k in 2, d, (M, M,) <acR. Then there
is also some ¢ > 0 such that d,(M,, M,) < a(l — ¢). By the definition
of the distance function there are elements m e (M,),, m' € (M,), with
max {||m|l,, [|m'|[,} =1 and ||m + m'|], < a(l —e¢). Let m,eM, m,e
M, be such that {(m (k) = m, (my(k) = m/. By continuity there is
a clopen set D containing & with || (m D)}, > |[m]|,—e, [[{(myD)]], >
Hm'[l, — e and || (m,)>(1) + (m)(D)||, < a(l —¢) for all I in D. But
then a(l — ¢) > [[{mp(l) + (myy (D], = di(M,, M)-pt > (1 — &)d(M,, M)
whereby g, = max {||{m, D, |{myD)i}} > 1 —e. It follows that
d(M,, M,) < a for I in D.

On the other hand suppose that every neighborhood of %k contains
a point | where d,(M,, M) < a. By the preceding part of the proof
there is a clopen set D, containing [ and elements m,c M, m,c M,
with || (my) (1) + {my) )l < amax {||[{(my )y, || <{m ()]} and
max {[{m U)oy, | {<mp (@)} > 1/2 for I in D,. Let D be the
clopen set{l|d,(M, M, < a}-. We apply the existence lemma to
A: = {(my, my; Ep) | m; € M, mye M, (m,, m.; Ep) € QRS(X*22) ||[(m)y (1) +
(my M, = @ max {[|(m) D], [[<my )} and  max {[[{my) D),
[|[{myD);} = 1/2 for [ in C} and E,. The conditions (ii) and (iii)
are trivially satisfied and (i) we havejust shown. Thus there is a
pair 4, #%, such that these inequalities hold everywhere in D, in
particular also at %. But then amax{||{my) E)|, || Gy F)l} =
[ gy (B) + gy (B) || = di (M, My) max {|] ity (B) [, [I<mop(B) |1} It
follows that d,(M, M,) < a. Thus the component-wise distance
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function is both upper and lower semicontinuous and therefore

continuous.
(ii) Let d: = inf,d (M, M,). If m,e M, m,e M, and max {||m,||,
[lm,]|} = 1 then

4 = | (m+ maJ)rdo. = | (1<, &)+ (mo> () 7 de.
= | (@, M)y (max (|| <m> (), || <mo> () |1:>de,
2 @ (max ([ <m) @)l || <m) @) L)y do. = &

so that d(M,, M,) = d.

On the other hand since d,(M,, M,) is continuous and £ compact,
there is a point & in 2 such that d,(M, M,) =d. Let 1>¢>0.
As in (i) we can find elements m, € M,, m, € M, so that max {||{m;>D)||,,
[<mHyD I} (= say  [[<m) D) >1—e and |[[<{mp(l) + <{my D], <
d(1l + ¢) for | in some clopen set D containg k. But then:

a1l + ¢) -~ dl +¢) 5) I

max (| Bym, |, | Eym, |} = Em,|
1—%¢ 1 -
=L 1emy W lrap.) " > (Sp(da + ordp. )

> ([ 1mp@ + mp@tdo, )" = 1 Bym, + my]
= (M, M) max (| Eym. |, | Bym,l)

So d(M,, M,) < d(l + ¢)/(L —¢) (note ||E,m,||+0). Since & was
arbitrary subject to 1 > ¢ > 0, d(M,, M,) = d.

(iii) It is straightforward to show that the spaces (S(y)), are
one-dimensional at most and equal to lin ((y>(k)) where {(y)(k) is
finite and nonzero. Thus, if d,(S(y), M) =0 on a clopen set D # ¢
then, by 3.2 (i) (S(¥), N M, = {0} and so {y)(k)e M, U {=} on D.
By 2.5 (ii) K,y M. Since the distance between {0} and any other
subspace is 1, B,y = 0. Thus S(y) N M = {0}.

On the other hand, if S(y) N M =+ {0} let z be an element in the
intersection with z = 0 and 1 < ||<{z)(%k)||, < 2 on suppz. Then {(z)(k)
is a nonzero element in (S(¥)), N M, for all & in suppz. By 3.2 (i)
d,(S(y), M) = 0 on supp 2.

4. The case of finite multiplicity. In this section we consider
the case where m(l) < «. It turns out that in this situation the
spaces behave as a sort of continuous analogue to the Bochner spaces
L*(V; p) with finite-dimensional V. In particular, X can be split
up in a very simple manner in contrast to the situation for arbi-
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trary Boolean algebras of projections with finite multiplicity (cf.
the counterexample in [6]).

LEMMA 4.1. Let <% be a complete Boolean algebra of LP-pro-
jections on X, MC X a Z-cycle. For each x€ X, there is a z€ X
with

(M + Sx)” = M+ S(z) .

Proof. Let D: = {k|d, (M, S(x)) # 0}", a clopen set in 2. We
apply the existence lemma to K, and

A:={(z, F)| (2, F)eQS(X, &), dM,S(z)=1/4,
F(M + S(z)) = F(M + Sx)))} .

That (ii) and (iii) are satisfied is easily verified. Now suppose that
0= F=E,<E, Then there is a point ke C with d,(M, S(x)) = 0.
Then M,%M,+1in ({(x)(k)) so that there is a point ¥, € M, +lin ({x)(k))
with ||¥,l] = 1 and d(M,, lin(y,)) > 1/3. Let meM and ac R such
that y, = {(m + ax)(k) (note that a s« 0). Then there is, by the con-
tinuity of d. (M, S(m + az)) and [m + ax](-) a clopen set C,cC
containing k& such that d,(M, S(m + ax)) > 1/4 and [m + ax]{l) > 1/2
for leC, Let z, = Eg(m + ax). Clearly (2, E;)c @S(X, &) and
d(M, S(z)) = 1/4. But E,x = (2, — E;m)/ae M + S(z,). It follows
that Eq (M + S(z,)) = Es,(M + S(x))”). Thus (i) also holds. By the
existence lemma there is a (z, E,) € 4, i.e., an element ze¢ X with
E,(M + S(2)) = E,(M + S(x))").

But (M + S(x))” = E,((M + S(X)) + M= E, (M + Sz)) + M =
M + S(z) since d,(M, S(x)) = 0 outside D implies (I — E,)(S(x)) c M.

THEOREM 4.2. Let <Z be a complete Boolean algebra of L*-pro-
jections on the real Banach space X.

(1) If 2 satisfies the CCC and I has finite multiplicity, say
n, then there exist x, ---,x, in X such that

X=8@)D - DSx,) .

For any xe X with Ex += 0 for all Ec <#, E+0, the Banach spaces
X, in the integral module representation of X w.r.t. x are finite-
dimensional, and n = max,., (dim X,).

(ii) Conversely, if there is an xe€ X with E, = I such that the
X, in the corresponding intgral module representation are finite-
dimensional with n: = max,., (dim X,) then m(I) 1s finite and equal
to n.

Proof.
(i) The first part of the proposition follows from 4.1 by induec-
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tion on n.

Let y+— {y) be the integral module representation of X w.r.t.
xz. Bach ye X can be written as y, + --- + v, with y,e S(x,) for
each i. Thus <¥) = {y,) + -+ + Y.y so that X, =[S@)], + -+ +
[Sx)], for k in 2. It follows that max,., (dim X,) < =.

However suppose that max,.,(dim X,) < ». This means that
for each ke 2 there is an x,. with <{x,)(k)=0. Let D;:={k|<x,)k)=

0} for i=1, ---, n. Then U7, D,;=2 so that {k| (x> (k)= 0}c U= D,.
Since this set is open it is contamed in Ui C; whereby C;: = (D))
for 1 =1, ,n — 1 (note that 2 is extremally disconnected). Let

Yp: = & + Eciwﬂ for these 1. Then (I — E,)y;=2; and E,y, = E;x,
It follows that S(y) + ---SW._)2Sx) + --- + S(x,) = X. This is
in contradiction to the fact that X has multiplicity .

(ii) Suppose that dim X, = m for some ke Q. Let %, ---, %,
be a basis of X, x,, ---, x,, elements in X with <{x,)(k) = %; for each
1 and M: =[S(x)+---S(x,)]". Then M, = X, and by the continuity
of the dimension M, = X,. for k' in some clopen neighbourhood D
of k. Then E,X = E,M, and E, has finite multiplicity less than or
equal to m. Thus there is a neighbourhood of each point & such
that the corresponding projection has multiplicity not greater than
n. It follows from 1.2 (ii) that m(l) < n and then the equality
follows from (i).

Note. It follows from 4.2 that m(#,) = max,., (dim X,) for each
clopen D in £ and thus that uniform multiplicity » of I implies
dim X, = n for all £ in Q.

We now investigate the restriction of the multiplicity function
to eycles in the case where I has finite multiplicity.

THEOREM 4.3. Let X be a Banach space, <& a complete Boolean
algebra of L*-projections on X. Suppose that I has finite multipli-
city n, that 2 satisfies the CCC and that M is a Z-cycle. We
denote the multiplicity in <& |, by 7.

(1) m(H|y) < m(E) for all Ee .

(ii) M= X if and only if m(E) = (¥ |y) for all Ec€ &.

In particular, if I and I|y, have uniform multiplicity and E, = I,
M= X if and only +f m(I) = (L |y).

(i) If I|, has finite unmiform multiplicity k, Ey =1 and
x, -+, x; are elements of M such that M = S(x,) P --- D S(xt), then
there are i, -+, x, such that X = S(x,) P --- B S(x,).

Proof.
(i) The same proof as 4.2 (i) gives #i(E |y)=max,., (dim M,)<
max,., (dim X,) = m(&) (whereby D is the clopen subset of 2 as-
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sociated with K).

(ii) M= X if and only if M, = X, for all k¢ Q2. Since dim X,
is finite, it suffices that dim M, = dim X, for each %k and, since 2 is
totally disconnected and %k — dim M,, k+— dim X, are continuous, that
SUpP;.p (dim M) = sup,., (dim X,) for all clopen D. This is clearly
equivalent to (& |,) = m(E) for each Ke Z.

(iii) Let Di., = {k|dim X, = k& + 1}. Apply the existence lemma
to Ep;,, and the set {(y, E,) | d(S(y), M) = 1/2} to obtain «j, with
E,.;. = E,y,, and d(S(xz..), M) = 1/2. Let Di, = {k|dim X, = k+2)
and apply the existence lemma to E,;, and {(y, E,)|d(S(y), M P
S(xz,.) = 1/2} to obtain X3,,. Continue until «,. Since dim M, =k
for all % and supp (x;.,>=Dj,, for 1=<r=<n—k we have dim [S(z)PD
- P S(z,)]. = dim X, for all & and thus X = S(z) & --- D S(z,).

We now show that in the case of finite multiplicity, the space
X may be arbitrarily well approximated by sums of Bochner spaces
LA(V; ).

Let (S, 3%, ¢#) be a finite measure space and V a finite-dimen-
sional Banach space with n: = dim V. By <%, we mean the Boolean
algebra on L”(V; ) which consists of the characteristic projections
E, f—fX, for DeX. <% 1is obviously a o-complete algebra of
L*-projections. Since (S, 3, p) is finite, I <% satisfies the CCC and
o-completeness is equivalent to completeness.

LEMMA 4.4. I€.2Z: has finite uniform multiplicity and m(l)=
dim V.

Proof. Let e, ---,e, be a basis of V,e, ---, e, L?(V; ) the
corresponding constant functions. For DelX with g(D) > 0 it is
easy to see that E,L*(V;p)(=L*(V;pt!,) = Sye) + -+ + Spe,)
so that m(&,) < n for all K.

On the other hand, suppose that for some E, == 0, S(f,))PD--- B
S(f,) = E,L*(V; p) with k < n.

Then either (a) the set {weD| f(w)e¢lin{filw), ---, fi{w)}} has
zero measure for all fe K,L°(V; 1) or (b) there is an fe E,L*(V; 1)
and a measurable set Cc D, #(C) > 0 such that f(w)¢ lin {f{(®), - - -,
fe(w)} for weC.

(Note that both (a) and (b) are independent of the choice of repre-
sentatives.)

If (a) holds, let K be the unit ball of V and v, ---, v, a finite
family of elements in K with Kc Ui, B(v, 1/4). The set G: =
Ui {w | we D, v,(w)(=w,) ¢ lin {fi(®w), ---, fi(®)}} has by (a) zero meas-
ure. Thus there is a point w ¢ G. But then », elin {f,(w), - - -, fi(®)}
for all < and thus d(v, lin {fi(®), - - -, fil®)}) < 1/4 for all ve K. This
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of course contradicts the fact that & < dim V.

However if (b) holds, then there is an ¢>0 and C.c C, #(C.)>0
with d(f(w), lin {fi(®), -+, fulw)})) = ¢ for weC.. But then ||X.f—
S g:fillr = ep(C,) for all g, -+, g, in the Cunningham algebra of
> which contradicts the fact that E,L*(V; p) = S(fi)) D - D S(f).

Thus m (E,) = » for all E,e. %, E, # 0.

LEMMA 4.5. Let X, &, 2 etc. satisfy the conditions of Theorem
4.2,

(i) For each k in £ and each € > 0 there is a clopen neigh-
bourhood D of k such that 0(X,, X,) < ¢ for |l in D.

Here 6(X,, X;) denotes the Banach-Mazur distance of X, from
X, i.e., 0(X,, X)):=inf {log |[|2[|- ||| | p: X, — X, isomorphism} with
inf @: = oo,

(ii) For each k in 2 and each € > 0 there s a clopen neigh-
bourhood D of k such that o(L*(X,, (D, p.|n), E,X) = e.

Proof.

(i) Suppose ¢ and k are given and choose an 1 >¢ > 0 such
that log(l+¢')/(1—¢')<e. Since X and .2z satisfy the conditions of
Theorem 4.2, X, has finite dimension say n. Then there is a clopen
neighbourhood D, of % such that X, has dimension % for ! in D,
(2.4 (iii)). Let yf, ---, yx be a base of X, with |||, =1 for all <
and let » > 0 be a number such that ||>7%n\y5|l, = » max |n;| for

all real numbers A\, ---, N,. (It is in fact possible to choose a base
for which 7 can be put equal to 1.)
Let v, ---, ¥, be elements of X such that (¥,)(k) = y* for each

1. Since the unit ball of X, is totally bounded it can be covered
by finitely many balls of radius 7¢’/4n, say those with centers
%y -+, 2n. Finally, if (y,>(I) # o, let ¢;: X, — X, be the linear map
which maps w7 into <{y,)(l) for each 4. Due to the continuity of
the norm resolution ||®,(?) ||, is continuous as a function of I for
each z in X,. Thus there is a clopen set D containing k& and con-
tained in D, such that:

@) llzdle — @) <eMdi=1,---, m,

) 1-e<[[ypDIi<1+e1=1---,m,
for all I in D.

But then for each ze X, ||2|l,=1 there is a 2, with ||z — z,||,<
re’fdnz — z, = S5 nyf for suitable \,’s in R and from ||z — z,[], <
re’[4n it follows that \; < &'/4n for all j. Thus

o) [l — zll] = PRl — [Pz 1] + [Pl — (12,1l ]
+ Hzalle — ll2lle]
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<NlPlz—2) i+ [z —2: [+ (€'/4) < || ZS’j<?/a'>(l)|11+(7'5'/4n)+(5'/4)
< n(E'fAn)(1 + &) + (re’'/dn) 4+ (¢'/4) < &' .
In particular, since ¢’ < 1 each @, is an isomorphism and
lpdl=1+¢, (ol =1/A —¢).
But then

1+¢

(X, X)) < log |||+ ||@it || = log T e

(ii) Suppose ¢ and k are given and that ¢’ is a positive number
which we shall determine later. As in (i) we can determine a clopen
set D containing k such that 6(X,, X;) <& for [ in D. With the
notation of (i) let %, be the elements of L*(X,, (D, 0,|5)) which have
the constant value y* on D. Consider the map ¢ which maps every
element of the form >\ fiw, in E,X into >4 fy, in L*(X,, (D, p.|»))
where the f,’s are continuous functions on 2 which vanish outside
D. Then @ is clearly well-defined and linear and its domain and
range are dense subsets of E,X and L*(X,, (D, p.|,)) respectively.
Since

| Stwdr= | | Er0wo| de.

and also
| Sradr = | S rww: | dp.
we have
|5 s = || S ra || = || Srowsl
|3 rwwe | do. .
But

SO = 2 S AWt ).

It follows that

IS rowon] -

and thus that

S £t

<
k

S vz

itk
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IH é‘f‘(lxyixl)uj - |l i,l fDy : l < pe'(l + &)t

|13 s
Thus
‘ il,fy = “ é_‘.ffﬂi | ,,‘ = pe'(l + e’)"‘li i fa.
and
{ H éfiyi“ - }[ if‘g’ l = 1 _5,([51'(;—_5):,;-1) | éfﬂz

For sufficiently small ¢’ we thus have that @ is 1 — 1 and

log |||l l¢7H| = €.

We can thus extend @ to an isomorphism between FE,X and L*(X,,
(D, 0.|p)) for which this inequality also holds.

We are now in a position to prove the promised result, that it
can be arbitrarily well approximated by sums of Bochner spaces.
The reader will note that we actually prove rather more than is
contained in the statement of the theorem, we have however chosen
this formulation for the sake of clarity.

THEOREM 4.6. Let X be a Banach space and a complete Boolean
algebra of Lr-projections on X, satisfying the CCC, with m(I) = n,
finite. Then, for each ¢ >0, there is a finite family of finite
measure spaces (S;, >, Uicic» ond a family (V;).cj<, of Banach
spaces of dimension less than or equal to wn, such that, for Y: =
Lp( Vn #1) @p Lp( sz 4“2) ep’ Ty @;» Lp( V,, #r) 6( Y» X) é €.

Proof. By Lemma 4.5 we can find for each point % a clopen
neighbourhood D such that (L*(X,, (D, p.|p), E,X) <e. Since 2 is
compact there is a finite set %, ---, k. such that the corresponding
D;’s cover £, Wlog we may assume that the D,’s are disjoint.
Set (S;, X3, #;) = (D;, Borel sets on Dj, p, |;) and V; = X, for each
j. dim V; = dim X;; < n. Since X=E, X@, E,X®D,, - -, D, E, X
it follows immediately that 6(Y, X) < ¢ by composing the individual
isomorphisms.

5. The restriction of the multiplicity function. Let M be a
fixed <#-cycle in X. <Z induces a complete Boolean algebra of L*-
projections #: = & |y on M, and it is natural to ask whether it is
possible to compare the respective multiplicity functions. If we
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denote by 7t the “restricted” multiplicity function, one would expect
that m(& ) Em(E) for Ee <Z. It turns out that this is true for our
situation, but there seems to be no result in this direction for the
general case of Boolean algebras of projections. To avoid notational
complications we will restrict ourselves to the case where <7 satisfies
the CCC (note that this is then also true for <7 since the repre-
sentation space of Zis a subspace of Q).

The following problem crops up: Is it possible given a fixed
family of cycles generated by elements of X to find the same
number of elements in M such that the cycles generated by these
elements approximate the same elements in M? The case of finite
multiplicity is already settled (cf. §4) whereas the general case
needs a certain amount of technical preliminaries.

Lemma 5.1.

(1) Let x be an element of X such that E,= I, S(x) M = 0,
neil = 1. Then there is an me M such that [x—m](k)=3d,(S(x), M)
for keQ. If m' is any element of M such that ||Eyx — m'|| £ ¢
(where ¢ = 0, D C Q2 clopen), then we have ||E,m — m'|| < 4e.

(2) For every xe X there is an m e M such that ||Ex — m'||=
d(He#,e=0 meM) implies |Em — m'|| < 4e.

Note. In (1) d,(S(x), M) is taken in the integral module repre-
sentation with respect to this x.

Proof.

(1) We shall work in the integral module representation of X
with respect to . Let 2’ be the open dense set {k|d,(S(x), M)>0}.
For ke, select an m, in M with |m, — z](k) < 2d,(S(x), M). By
‘continuity there is a clopen neighbourhood D, of & on which we
have |m;, — z](I) < 3d,(S(x), M) for [ in D,. By applying the ex-
istence lemma we obtain an element m in M for which [m — z|(k)=<
3d,(S(x), M) for all k in () = Q. |E,x— m']|=<¢ implies &’ =
S [E,,x—m’]i’(lc)dpxgg [e—m'|?(k)dp,. On the other hand [x—m'|(k)=

2 D
d,(S(x), M)[x](k) = d,(S(x), M) (all k¢ 2) so that

1 Bgm — Byl = { Lim — apode.= | (m — oP(0dp.
= | @S, 1o,
< 3”8”8 [x — m]P(k)do, < 37" .
D

But this implies | E,m — m'|| < | E,m — Ezll + ||[Eype — m'|] £ 4e.
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(2) If E, means the carrier projection of x, £, the projection
in & with S(E,x) N M = 0, S(I — E)x) Cc M (cf. [2], 4.7) we have,
with Ey;: = E,°E,, S(Ex)N EM =0, S(I — E)x)yc M, E;, = E,. We
apply (1) to the Banach space E,X, the Boolean algebra <7 |; x, the
B |gx-cycle E,M, and the distinguished element Ex/||Ewx| (if Ex=
0, we have S(x) C M so that we may choose x = m). We get an
m, €M for which the conclusion of (1) is wvalid. Define m: =
m, || Ex)| + (I — E)re M. Suppose m'e M,e =0, Ec <Z are given
with ||[Ex—m'||<e. It follows that e*=||EEx— Em'||?+||(I—E,)Ex—
(I— E)ym'||*. By (1), we have |[Em, — E(m'/||Ex|) || < 4| E(Ex/
| Ez|)) — Ey(m'[|| B |]) ], i.e., || E(|| Ex||m,) — Em'|| < 4| EEx — Egm/||.

It follows that

| Em — w'||” = ||[E,Em — Em/|]* + || (I — E)Em — (I — E)m'|]?
= || E(|| Ex||m,) — Em'|” + |[(I — E)Ex — (I — E)m'||]”
S 4 ||EEx — B[P + ||(I — E)(Bx — m)|?
< 4[| Ey(Bx — m)|[* + ||[(I — Eo)(BEx — m')||*]
S 4 ||Ex — m'||P £ 4%e? .
LEMMA 5.2. Let (x;);e; be an infinite family of elements in X.
There is a family (m;);., in M such that Cz I=Cz J, (lin U,.; Sx,))™ N
Mc (lin U e, Sim)))".

Proof. Let J be the set of all (¢, ---, %, @y, -+, @,) Where

iy -, 1, 18 a finite subset of I and a, ---, a, are rational numbers.
It is clear that CzI=CzJ. For j= (i, -+, %5 ay -+, a,), let m;
be that element in M which is associated with 2 = au, + --- +

a,x; as in Lemma 5.1 (2).

Let m’ be an element of (lin J,.;S&)) " NM,e>0. It is pos-
sible, by the definition of S(x;), to find elements z,, ---, x; , opera-
tors > aiEf(o=1,---,r) such that the af are rational and
N3y St atEfx; —m'|| <e. An easy computation shows that we
may write Z‘,’- 21 @B, as S E’;(bfwil + -+« + bjx;) whereby
the family (El)z B I dlsjoint partition of I and the b} are

rational numbers. Wlth Ga =y e, 05 b e, ), M = myy, B =
[| Ey(biw,, + --- + bl;) — E;m'l[ it follows that {[E;m; Ezm’|| =< 4e
and therefore that || >3- E;mz m'|]? = St || Emy — B’ ||P <
4 et = 42 S, By(biw, + - + b)) — m'||? < 4%¢?. Thus  we

have m’ € (lin U,., S(m;))".
THEOREM 5.3. #i(E|y) = m(E) for all Ee 2Z.

Proof. By the usual techniques we can restrict ourselves to the
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case when E = I and 2 satisfies the CCC. But then 5.8 is a con-
sequence of 4.2 and 5.2 in the case of m(&) finite and infinite,
respectively.
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