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C*(F2) is a primitive C*-algebra with no nontrivial
projection. C*(F2) has a separating family of finite-dimen-
sional representations.

1* Introduction. We present a "generic" C*-algebra in illustra-
tion of several peculiar phenomena that may occur in the theory of
representations.

Let F2 denote the free group on two generators. If π is the
universal unitary representation of F2 on a Hubert space £ίf, then
the full group C "-algebra C*(F2) is the C*-subalgebra of ^ ( < a r )
generated by the set {π(g):geF2} (see [4, §13.9]). Alternatively,
we can re-define C*(F2), in an operator-theoretical setting, as
follows:

DEFINITION. Let U, V be two unitary operators on a Hubert
space J%f. We say that (17, V) is a universal pair of unitaries
iff for each pair of unitary operators (Ul9 VΊ) on a Hubert space

the assignment

Ό\ >UX

v\—>v,
extends to a *-homomorphism from C*(Z7, V) onto C*(Ul9 FJ.

DEFINITION. We let C*(F2) denote the abstract C*-algebra which
is *-isomorphic with the C*-algebra generated by a universal pair
of unitaries.

Obviously, the universal pairs of unitaries are unique up to
algebraic Msomorphic equivalence. To see the existence of a
universal pair of unitaries, we may simply let

where (Ϊ7V, VJ) runs through all possible pairs of unitary operators
on a fixed separable Hubert space. By some judicious selection, it
suffices to let v run through only a countable index set. [In fact,
for a general separable C*-algebra 81 £ &{βl?). There is always
a projection P of countable dimension, such that A h-> PAP is a
^isomorphism from Sί onto P9ΪP £ ^(J?^f).\

The main result of this paper is concerned with various expres-
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sions for the universal pairs of unitaries. On one hand, we can
just take the expression (*) above, such that each (Uu, Vv) is a pair
of finite-dimensional unitary matrices (Theorem 7). On the other
hand, there exist a universal pair of unitary operators that do not
have a common nontrivial reducing subspace (Theorem 6). These
two apparently opposite constructions induce two important repre-
sentations of C*(F2).

Now, we examine C*(F2) in regard to its operator-algebraic
structure. First and foremost, C*(F2) is a primitive C*-algebra;
i.e., C*(F2) has a faithful irreducible representation (Theorem 6).
This yields the key information that is indispensable to the study
of Prim (F2) (cf. [7, Proposition 6.1]). Furthermore, by the universal
property of C*(FZ), all C*-algebras generated by two unitaries
(including all C*-algebras generated by single operators) are *-homo-
morphic images of C*(F2). It may be surprising to see that such
a "tremendous" C*-algebra has no nontrivial projection (Theorem
1), and no nonnormal hyponormal element (Corollary 8); indeed,
C*(F2) even has a faithful tracial state (Corollary 9).

In short, C*(F2), being faithfully irreducibly represented, serves
as an example for each of the following unusual conditions:

( i ) an irreducible C*-algebra with (the most) abundant ideals.
(ii) an irreducible C*-algebra with no nontrivial projection

(cf. another example given by Philip Green [5]).
(iii) an irreducible C*-algebra that admits a separating family

of finite-dimensional representations.
Finally, we remark that all results of this paper can be extended

to C*(FJ (for n> 1) and ( ^ ( F J . Readers are also referred to
[2, Lemma 4.4-Theorem 4.5, pp. 1108-1109; 9, Proposition 2.7, p. 250;
10, §3; 11, Theorem 12] for some other unusual aspects of C*(F2).

2* The author is indebted to Robert Powers for helpful com-
munication leading to the following theorem. (The idea of the proof
is actually originated by Joel Cohen [3].)

THEOREM 1. C*(F2) has no nontrivial projection.

Proof. By a faithful representation, we may write C*(F2) =
C*(Uf V), where U, V are a universal pair of unitary operators on
a Hubert space ^f. Let

[all norm-continuous functions Φ: [0, 1]

(such that Φ(0) are scalar operators

Then 81 is a C*-algebra with no nontrivial projections. In fact, if
Φ e 81 is a projection, then Φ(0) is 0 or I and by continuity, the
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projections (Φ(t))teί0>1] must be all 0 or all /. Now we claim that
C*(F2) can be imbedded into 3ϊ as a C*-subalgebra and consequently,
C*(F2) has no nontrivial projection either.

To see the claim, we first choose, by the spectral theorem, two
hermitian operators A, Be &(<&?) such that U=eίA, V=eiB. Next,
define two unitary elements Φσ, Φv e δί by

φσ(t) = eitΛ, Φv{t) = eitB .

Then obviously, the evaluation map Φ i—• Φ(l) is a *-homomorphism
from C*(Φσ, Φv) onto C*(F2). On the other hand, by the universal
property of C*(F2), the assignment Uh-*Φσ, V\-^ΦV determines a
*-homomorphism from C*(F2) onto C*(Φσ, Φv). Hence, the two *-homo-
morphisms above, being inverse to each other, must be "'-isomor-
phisms. Therefore, C*(F2) can be imbedded into Sί as claimed.

COROLLARY 2. If π is a faithful representation of C*(F2) on
a Hubert space f)ϊf, then τr(C*(F2)) contains no nonzero compact
operator.

Proof. Any C*-algebra, containing a nonzero compact operator
K, must also contain K*K and, thus, the finite-rank spectral pro-
jections of K*K. Since τr(C*(F2)) ~ C*(F2) contains no nontrivial
projection, we have that 7r(C*(F2)) contains no nonzero compact
operator, either.

We proceed to construct a universal pair of unitary operators
that do not have a common nontrivial reducing subspace. The
main technique below is a variant of Radjavi-RosenthaΓs treatment
on nonexistence of common invariant subspace [8, Theorem 7.10,
p. 121; Theorem 8.30, p. 162].

LEMMA 3. Let A, B be two infinite matrices standing for
operators on a separable Hilbert space £if endowed with a fixed
orthonormal basis {en}Z=ι. If A is a diagonal operator with all
distinct diagonal entries, and if all first-column entries of B are
nonzero, then A, B do not have a common nontrivial reducing
subspace.

Proof. By simple evaluation on infinite matrices, we deduce
that the commutant of A consists of diagonal operators only, and,
diagonal operators commuting with B must be scalar operators.
Hence, the projections commuting with both A and B are trivial
projections. Therefore, A, B do not have a common nontrivial
reducing subspace.
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In the following two lemmas, we deal with the compact pertur-
bations of unitary operators.

LEMMA 4. Let U be a unitary operator on a separable Hubert
space Sίf. Then there exists a compact operator K, and a unitary
diagonal operator D with respect to an orthonormal basis {en}^u

such that U' = D + K and all diagonal entries of D are distinct.

Proof. From [6], every normal operator U can be written as
Do + KQf where KQ is a compact operator and DQ is a diagonal
operator with respect to an orthonormal basis {en}n=i. Let {αn}Γ-i be
the diagonal entries of Do. Since U = Do + Ko is unitary, we derive
that lim^oo | α Λ | = l. It is easy to choose a complex sequence {βw}~=i
such that

Iβn\ = 1 for all n

βi Φ β3- whenever i Φ j

l i m ^ (an - βn) = 0 .

Denoting by D for the diagonal operator with the diagonal entries
{βn)n=if we have that Do — D is a diagonal compact operator; thus
K = Ko + Do — D is a compact operator and U = D + K as desired.

LEMMA 5. Let U be a unitary operator on a separable Hubert
space <-9έf endowed with a fixed orthonormal basis {e»}»=i. Then
there exists a compact operator Ke &{3if), such that U — K has
the infinite matrix expression with all first-column entries being
nonzero and with U — K unitary.

Proof. Let v be a unit vector with all nonzero co-ordinates
with respect to the orthonormal basis {en}n=19 and let Sf denote the
linear span of v and UeL( = the first-column vector of U). Choose
any unitary operator 7 6 . ^ ( ^ ) such that

^ with ViUeJ - v ,

Then V — / is an operator of rank <̂  2 and the first column vector
of VU is v; thus

VU=U+(V

is a compact perturbation of U as desired.

THEOREM 6. C*(F2) is a primitive C*-algebra) i.e., C*(F2)
α faithful irreducible representation.
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Proof. Since C*(F2) is separable, we may write C*(F2) =
C*(U, V), where U, V are a universal pair of unitary operators on
a separable Hubert space 3(f. Applying Lemmas 4—5 to Z7, V, we
have that

U = JJO + compact, V = Vo + compact,

and with respect to a suitable orthonormal basis, £/0 is a unitary
diagonal operator with distinct diagonal entries, and Vo is a unitary
operator with all first-column entries nonzero. From the universal
property, the assignment

U\ >U0, Vi >V0

defines a representation

π: C*(F2) > C*(U0, Vo) £ &{βίf) .

By Lemma 3, Uo, Vo do not have a common nontrivial reducing sub-
space; thus C*(?70, Vo) is an irreducible C*-algebra, and π is an
irreducible representation.

It remains to show that π is faithful. Letting 5ίΓ(3ίf) be the
ideal of compact operators and η: ^{^f) -> ̂ {^f)\^Γ{^f) be the
natural quotient map, we have then

η(C*(UOf Vo)) = C*(7}(U0), V(VO)) = C*(η(U), η(V)) .

But from Corollary 2, η restricted to C*(C7, V) is an ^-isomorphism.
The composition of the canonical *-homomorphisms

0), η(V0)) = C

- C*(C7, V) = C*(F2)

leads to the identity map on C*(F2); therefore π is a ^isomorphism
as desired.

For a general C*-algebra 81 £ &(<%?) with separable <^, we
can construct a "completely order injection" 9 from 81 into φ£U ΛfΛ,
the direct sum of full matrix algebras, by letting

where {Pn} is a sequence of finite-rank projections approaching
strongly to I. In case 81 = G*(F2), we will modify φ to get actually
an "algebraic ^isomorphism".

THEOREM 7. C*(F2) has a separating family of finite-dimen-
sional representations.
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Proof. Since C*(F2) is separable, we may assume that C*(F2) =
C*(Z7, V) where U, V are a universal pair of unitary operators on
a separable Hubert space J%?. Let {Pn}n be a sequence of increas-
ing projections in &{£lf) approaching strongly to the identity
operator / with rank Pn — n. Write

A * Δ
JΛ.n£\.n

Λ*
JrXn

(P.

_(p. - -B:

By identifying Pn£έfPn with Mn, we may regard Pn as the identity
n x n matrix, and Un, Vn as 2n x 2n unitary matrices. From the
universal property of C*(F2), the assignment

XT JJ -XT T7-

defines a representation πn: C*(F2) —> Af2n. Now, we ciαΐm that
{̂ %}Γ=i is a separating family of representations; in other words,
the *-homomorphism

defined by

π{A) = 0Γ=1 π%{A) ,

is actually a ^isomorphism.
Note that in the strong topology, Un, U*, Vn, and V* converge

to

~U 0] Γtf* 0"

_0 - U*} ' [0 - U
V 0

0 -V*
A Γ F * 0

a n d Lo -v
respectively. Hence, if F( , ) is a finite linear combination of
words in two free variables, then F(UK, VJ also converges to

Ύ(U, V) 0 1

0 F(-U*,-V*)\

in the strong topology. Therefore, for any ε > 0, and given
\\F(U, V)|| = 1, we have that

\\F(Un, F J U έ l - e

for all sufficiently large n; thus
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\\π(F(U, TO)|| ^ \\πΛ(F(U, V))\\ = \\F(Un, VJ\\ ̂  1 - ε .

Since ε is arbitrary, we conclude that π9 restricted to the pre-G*-
algebra generated by U, V, is an isometry. By continuity, π is an
isometry and, thus, a ^isomorphism as desired.

We say that an operator A is hyponormal iff A*A ̂  AA*.

COROLLARY 8. Every hyponormal operator in C*(F2) is normal.

Proof. From the theorem above, we may imbed C*(F2) into
(Dn**iM2n as a C*-subalgebra. Since every hyponormal matrix is
normal, we have then for each A = φAw e ©Λf2w,

A is hyponormal = > Aw is hyponormal for each n

==> AΛ is normal for each n

===> A is normal

as desired.

COROLLARY 9. C*(F2) has a faithful tracial state.

Proof. By Theorem 7, we can imbed C*(F2) into φΞUAf2l, as a
C*-subalgebra. Let τM be the faithful tracial state of M2n. Then
τ: 0 M2n -> C, defined by

r(θ A•) = Σ (τ»(AJ/2 ) ,

is a faithful tracial state as desired.
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