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To within equivalence, the only valuations on the field
F(X) of rational functions over F' that are improper on F
are the valuations v,, where p is a prime polynomial of
F[X], and the valuation v_, defined by the prime polynomial
X of F[X']. It is classic that if F is a finite field, the
set & defined by, Z”’={p:p is a prime polynomial over
F}U{co}, has the Strong Approximation Property, that is,
for any finite subset G of Z, any ¢<.9”\@G, any family
(@g)gec of elements of F(X) indexed by G, and any M >0,
there exists a nonzero element % in F(X) such that
v,(h —a,) > M for all p in G and v,(h) =0 for all p in
NG U{g}). We shall first prove that 7 gsatisfies this
condition when F' is infinite as well. We then apply this
result to obtain a characterization of all locally bounded
topologies on F(X) for which the subfield F' is bounded.

1. The strong approximation theorem. Here, &° is the set
of prime polynomials in F[X] and &’ is the set . U {}.

THEOREM 1 (The strong approximation theorem). For any finite
subset G of ', any qe F\G, any family (a,),.c of elements of
F(X) indexed by G, and any positive mumber M, there exists a
nonzero h in F(X) such that v,(h—a,)=M for all peG and v,(h)=0
for all de P\(G U {g}).

Proof. Let S = Z'\{qg}. By [5, Theorem 2.2, p. 322], it suffices
to show that for distinct elements » and s in § and M > 0, there
exists an 7 in F(X) such that v,(h —1)> M, v,(h) > M and v,(h) = 0
for all d e S\{r, s}.

Case 1. o ¢8. Then 7 and s are distinct prime polynomials
and so there exist polynomials f and g in F[X] such that f »”*' +
gs¥t = 1. Define b by, h = gs¥'. Then h — 1= —fr" and so
v(h—1)=M+ 1> M. Furthermore, v,(h) =2 M +1> M. As h is
a polynomial in F[X], v,(h) = 0 for all d€.Z” and so in particular
vy(h) = 0 for all d e S\{r, s}.

Case 2. 7 = o. Then s and ¢ are distinct pljime polynomials
in F[X]. As v, and v, are independent valuations on F(X), there
exist polynomials f and g such that ».(f/g — 1) > M and v,(f/9) > M
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{1, Theorem 1, p. 134]. Choose a positive integer ¢ such that
tdeg ¢>(M+ 1)deg s +deg f+ M. By the division algorithm, there
exist polynomials w and z in F[X] such that ¢ = ws"*'g + z where
degz < (M + 1)degs+degg. So fq'= fws¥t'g + fz and hence
flg = fws"]q" + fz/qg'g. Let h be defined by h = fws”*'/g’. Then
v(h) = M 4 1 > M and for all prime polynomials » which are distinct
from ¢, v,(h) = 0. So it suffices to show that v.(h — 1) > M.

Observe that v (f/g — k) = v.(f2/9q") = deg g + tdegq — deg f —
degz>degg+ M+ 1)degs +deg f+ M —degf— (M + 1)degs —
deg g =M. Therefore v (h—1)=v,(h— flg+ flg—1) = min {v.,(h—fg),
v.(flg — D} > M.

Case 3. s = co. Then r and ¢ are distinct prime polynomials.
Let f be a polynomial such that ».(f — 1) > M. Choose a positive
integer t such that tdegq > (M + 1)deg» + M. By the division
algorithm, there exist polynomials w and z in F[X] such that
q'f = wr+t 4 z where degz < (M + 1)deg». Then f = wr”/¢" +
2/q°. Let h be defined by h = z/¢®. Then v.(f — h) = v,(wr"/¢") =
M+1>M and so v, (h— 1) =v.(h— f+ f—1)=min {v,(h — f),
v.(f— 1)} > M. Furthermore,

Vo(h) =tdegqg —degz > M+ 1degr + M — (M + 1)degr =M.
Finally for de.Z\{q}, v,(h) = 0.

Case 4. <o € S\{r, s}. Then 7, s and ¢ are distinct prime poly-
nomials in F[X]. By Case 1, there exists a polynomial f in F[X]
such that »,(f — 1) > M and »,(f) > M. Choose ¢ so large such that
tdegq > (M + 1)(deg » + deg s) and let w and 2z be polynomials in
F[X] such that fq' = wr¥+s” 4 z where degz < (M + 1)(degr -+
deg s). Then f= wr’*+s"+/q' + z/q’'. Define h by h = z/q¢*. Then
v,.(f — h) = v, (wr"s")q¢") = M + 1 > M and similarly »,(f — h) > M.
Hence v,(h — 1) > M and v,(h) > M. Furthermore for all polynomials
p in F\{g}, v,(h) = 0. So it suffices to show that v, (k) =0. As
V(h) =t deg g—deg 2> (M+1)(deg r+deg s)— (M-+1)deg »+deg s) =0,
v,.(h) = 0.

2. Locally bounded topologies on F(X). Let R be a ring
and let .9 be a ring topology on R (that is, .~ is a topology on
R making (xz, y) -« — y and (z, y) — xy continuous from R X R to
R). A subset S of R is bounded for .7~ if given any neighborhood
¥ of 0, there exists a neighborhood U of 0 such that SUZV and
USC V. & is a locally bounded topology on R if there is a
bounded neighborhood of 0 for .7.
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A norm ||--|]| on a field K is a function from K to the nonnega-
tive reals satisfying ||| = 0 if and only if x =0, ||z — y|| < l|=}] +
vl and ||y ||<||x]|||y] for all z, ¥ in K. Observe that a subset of
K is bounded in norm if and only if it is bounded for the topology
defined by the norm; in particular the topology defined by a norm
is a loecally bounded topology.

A subset I of a field K is an almost order of K if (1) 0,1¢l,
(2) —I<S I, (8) II = I, (4) there exists a nonzero element % in I such
that W(I + I) S I, and (5) for each xe K*, there exist y, z in I*
such that x = yz™.

LEMMA 1 [6, Theorems 5 and 6]. If .7 is a mondiscrete, locally
bounded ring topology on a field K, then there is an almost order
I of K that is a bounded neighborhood of zero. Conversely, if I is
an almost order of K, then there exists a unique nondiscrete, locally
bounded ring topology 7~ on K for which I is a bounded mneighbor-
hood of zero. Furthermore, the topology 7~ defined by I is Haus-
dorff if and only if I + K.

In [7] we investigated locally bounded topologies on the quotient
fields of certain Dedekind domains. We recall the results of that
paper.

Let K be the quotient field of a Dedekind domain R that is not
a field, & the set of nonzero prime ideals of R and 2,6 a set

{l-ly +++, | +|.} of » mutually inequivalent proper absolute values on
K such that for each i€[l, n] and each pe.<? the topology .7,
defined by |--|; is distinet from the topology .7, defined by the

valuation v,. Let &' be defined by &' = & U.Z,. For each subset
S of ', we define O(S) by O(S) = {xe K: v,(x) = 0 for all pe SN
and |z|, £1 for all |-:|;e SN FL}.

We placed the following conditions on K, R and .&*':

I. Class Number Condition (CC). The class number of K over
R is finite.

II. Approximation Condition (AC). For any finite subset G of
', any ve F'\G, any family (a,);c¢ of elements of K indexed by
G, and any positive numbers M and ¢, there exists a nonzero element
h in K such that v,(h —a,) = M for all peGN.ZF |h—a., e
for all [--,eG N .Z, and heO(F\(G U {7})).

III. Discreteness Condition (DC). The only ring topology on K
for which O(Z") is a neighborhood of zero is the discrete topology.
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IV. Euclidean Condition (EC). There exist positive numbers
By -+, B. such that if a, be R with b 5= 0, then there exist ¢, » in
R satisfying a = bg + », |r|; £ |b],8; for all ¢ in [1, n].

LEMMA 2 [7, Lemma 2]. If S is a nonempty, proper subset of
G, then O(S) is an almost order for a unique, Hausdorff, non-
discrete, locally bounded ring topology .75 on K.

LEMMA 3 [7, Theorem 3, Statement 3]. Let .7 be a Hausdorf,
nondiscrete, locally bounded rimg topology on K with the following

property.

V. Boundedness Condition (BC). For any M >0, the set
0P N{yeK: |yl < M for all |--|,e Z.} is a bounded set for .7~

If &2, has exactly one element, then 9 = .9 for some non-
empty, proper subset S of 7',

THEOREM 2. Let F be a field and X an indeterminate over F.
Let P be the set of all prime polynomials over F, v, the valuation
on F(X) defined by v.(f/g) =deg g —deg f and let P, ={|--|.} where
1Y) = 277 for all y in F(X). Then F(X), F[X} and &' = F U P,
satisfy (CC), (AC), (DC) and (EC). Moreover, if 7~ is a Hausdorf,
nondiscrete, locally bounded rimg topology on F(X) for which the
subfield F is bounded, then 7 satisfies (BC) and hence 7 = T
for some monempty, proper subset S of F'.

Proof. As F[X] is a principal ideal domain, (CC) holds. By
Theorem 1, (AC) holds. Furthermore, (DC) holds. Indeed, as
O(&") = F, if .7 is a ring topology on F(X) for which O(Z) is a
neighborhood of zero, then the set FFN FX = {0} is a neighborhood
of zero for .. Thus 7 is discrete. By the division algorithm,
(EC) holds with B8, = 1. So it suffices to prove that (BC) holds when
.7~ is a locally bounded topology on F(X) for which the subfield F
is bounded.

Notice that for M >0, O(P)N{ye F(X): |y|l. < M} = {ye F[X]:
deg y < N} where N = InM/ln2. Consequently, if . is a locally
bounded topology on F(X) for which the subfield F is bounded, then
7~ satisfies (BC) and therefore by Lemma 3, .7 = 9 for some
nonempty, proper subset S of .

COROLLARY [7, Corollary 4). If F is a finite field and 7 isa
Hausdorff, nondiscrete, locally bounded topology on F(X), then there
exists a nonempty, proper subset S of P’ such that 7 = .
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The following theorem is a generalization of Theorem 2 of [3].

THEOREM 8. Let 7 be a Hausdorff, nondiscrete, locally bounded
ring topology on F(X) for which the subfield F is bounded. The
following statements are equivalent.

1° 7 is a field topology.

2° 7 is the supremum of finitely many valuation topologies
7, where pe F'.

3° There exists a mnonzero element a in F(X) such that
lim,_,a" = 0.

4° 7 1is defined by a norm.

Proof. Let S be a nonempty, proper subset of &' such that
I = s

To show that 1° implies 2°, it suffices to show that S is finite.
As 7 is a field topology and O(S) + 1 is a neighborhood of 1 in
7, there exists a y in O(S)\{0} such that (yO(S) + 1) < O(S) + 1.
If S is infinite, pick pe SN & such that v,(y) = 0. By Theorem 1,
there exists a z in F(X) such that v,(z + y™) > 0 and z<cO(S\{p}).
Then ,(2) =v,(z+ y* —y™) Zmin{v,(z + y™), v,(y™H} =0 and so
2€0(S). Hence yz + LeyO(S) + 1 and v,(yz + 1) = v,(y(z + y™)) =
v,(¥) + v,(y + 271) > 0. Therefore, v,((yz + 1)™) < 0. But (yz + 1)'e
O0@S) + 1 and v,(w) = 0 for all weO(S) + 1. Contradiction! There-
fore S is finite.

To prove that 2° implies 3°, we note that if S is any nonempty,
finite subset of &' and a is any nonzero element of F(X) such that
la], <1 when |-:],€S and v,(a) >0 for all p in SN < then
lim,..a* =0 in .7. The existence of such an element is guaranteed
by Theorem 1. The statement 3° implies 4° is a special case of
Cohn’s theorem [4, Theorem 6.1]. Finally the proof that 4° implies
1° is the same as that for normed algebras found on p. 77 of [2].
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