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We study the sequence of Betti numbers {8;(M)}z1 of
an arbitrary finitely generated nonfree module M over a
commutative noetherian local ring B and show that for a
certain class of rings this sequence is always nondecreasing,
while for a certain subclass of rings, the subsequeunce
{B:(M)};z, is strictly increasing.

In [3], a class of commutative noetherian local rings (&, m) called
BNSI rings was introduced. These rings have the property that for
every finitely generated nonfree module M, the sequence of Betti
numbers {3,(M)};;, is strictly increasing. Recall that B,(M) is the
dimension of the R/m-vector space Torf(M, R/m); equivalently, it is
the rank of the free module F; where

Fi—sF,y— - — Fy—> M——0

is a minimal R-free resolution of M. A class of BNSI rings was
given in [3, Theorem 3.2A]: Let (S,n) be a noetherian local ring
and let J be an ideal which is not contained in any prime ideal of
grade 1. If S is a domain, then S/nJ is a BNSI ring.

In this note, using a result of G. Levin [2] we prove:

THEOREM 1.1. Let (S,n) be a mnoetherian local ring of Krull
dimension d = 2. Then for n sufficiently large, the local ring
(R, m) = (S/n", w/n™) has the property that for all finitely generated
nonfree R-modules M, the sequence {B,(M)},=. is strictly increasing.
In fact, for all i = 2, B;(M) — B,(M)=d — 1.

Thus R is nearly a BNSI ring, except that our proof gives no
estimate for G,(M) — B,(M). Another drawback is that we can not
estimate how large » must be, since it comes, indirectly, from the
Artin-Rees Lemma. To fill these gaps (at least partially) we offer
the weaker, but more general:

COROLLARY 2.2. Let (S, n) be a moetherian local ring of Krull
dimension =1, and let R = S/u*, with n = 1. Then for all finitely
generated R-modules M, the sequence {B;(M)}:», is mondecreasing.

It should be pointed out that if S is assumed to be a domain
and grade n = 2, then by the theorem from [3] cited above, S/n* is
a BNSI ring for all n = 2.
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1. We begin with:

Proof of Theorem 1.1. Let 0 — K -— R™ - > M — 0 be exact, with
KcmR™, and let

.————)R”i.—._._;...__——)Rnl____)K___._)O

be a minimal R-free resolution of K. Then n,, = By(K) = B,:+.(M),
and since K c mR™, ann(m)-K = 0. Similarly, all the higher syzygies
of M are annihilated by ann(m). Thus it suffices to prove that for
any finitely generated R-module N which is annihilated by ann(m),

Bo(N) — B(N) = d — 1.
By [2, Formula (8), p. 9], for n sufficiently large we have

() Pi(t) = PY®t)/1 — ¢(P&t) — 1)

where for any noetherian local ring & and finitely generated Q-
module X, P{(t) is the Poincaré series >, B3,(X)t’. Now Pi(t) =
1+ bt -+ ---. Since

S¥?—us S— R——0

is part of a minimal S-resolution of R, b, = the minimal number of
generators of n*. But n® is n-primary, and so by Krull’s Generalized
Ideal Theorem [1, Theorem 152], b, = height uw = d. Now

1— t(PEt) — 1) =1 — bt* — -

and so if (1 —bt*— --- )= 3, ,¢t, then ¢, =1,¢, =0, and ¢, =
cob, = b,
Now let Py(t) = 3.2, p;t’. Thus

Sr2 Sre Sro N 0

is part of a minimal S-free resolution of N. We claim that p, + p, =
p,. To see this, localize at a minimal prime of S to obtain an artin
ring 7. Then the sequence

f

Tr: —— 5 T71 __g_, Tro

is exaet, so I(T") = l(im f) + U(im ¢) < (T + [(T?), where I(X)
denotes the length of X. Therefore p, < p, + »,. Now from (*) we
have

P

(Set )(Zpt) = Sputt.

Thus B, =¢p, + e, = p,, and B, = P, + &, + 6.P, = Dy + b,
Since bzg d g 2; Bzz p2+po+(d—1)po g D, + (d“l)p0261+
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(d"‘l)po- So /82_81=>—_(d—1)p02d—1§1-

2. We now remove the restriction that n be “sufficiently large”.
Our starting point is [3, Theorem 3.4]: Let (S, n) be a noetherian
local domain and let J be any nonzero ideal. Let R = S/nJ. Then
for any finitely generated R-module M, the sequence {B,(M)},., is
nondecreasing.

The proof of this result was a minor modification of the proof
of [3, Theorem 3.2]. A further modification yields:

PROPOSITION 2.1. Let (S, 1) be a noetherian local ring and let
J be a monnilpotent ideal. Let R = S/nJ. Then for any finitely
generated R-module M, the sequence {B3,(M)},~. s nondecreasing.

Proof. Following the proof of [3, Theorem 3.4] we obtain an
S-module A such that JS? c A S?, where p = G8,(M), and B,(M) =
the minimal number of generators of A. Thus we must show that
A can not be generated by » — 1 elements.

Let 2z eJ be a nonnilpotent element, and let 7' be the localization
of S at the multiplicative set {#'|7 = 0}. Then

ISR TCARs TS ®s T = T7 .

Since J meets the multiplicative set, JS?@sT = T?. Hence AQ;
T = T?. Now the minimal number of generators of A as an S-
module is at least the minimal number of generators of A@s T as
a T-module, and since a free module of rank p can not be generated
by p — 1 elements, we are done.

As an easy consequence we have:

COROLLARY 2.2. Let (S, n) be a noetherian local ring of Krull
dimension = 1, and let B = S/u*. Then for any finitely generated
R-module M, the sequence {B,(M)};~, 18 nondecreasing.

Proof. When n =1, R is a field and all the Betti numbers in
the sequence are 0. For n =2, let J =n"". Since Krull dim S > 1,
J is not nilpotent, and the preceding proposition applies.
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