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We define Hopf-C*-algebras and show one can associate
to each locally compact group G a cocommutative Hopf-C*-
algebras {C*(G), d} (here C*(G) is the C*-algebra of G) with
involution and coidentity whose intrinsic group is isomorphic
and homeomorphic to G. We also show that if the associ-
ated Hopf-C*-algebras are isomorphic then the groups are
isomorphic and homeomorphic.

The problem of finding dual objects for a locally compact group
G has been extensively studied. As far as we know, the first one
to use Hopf algebras in this context was J. Ernest [5]. We should
mention also the work of M. Enock and J. M. Schwartz [4] who,
working with Kac algebras, established a duality between categories.
Our research is based on the work of P. Eymard [6] and M. E.
Walter [11]. We show that the C*-algebra C*(G) has a natural Hopf
structure (although in general it is not a Hopf algebra in the usual
sense) and we recover G from C*(G) using this Hopf structure.
Based in this example we define the general concept of Hopf-C*-
algebras. We hope we will be able to characterize all C*-algebras
coming from groups using Hopf-C*-algebras in the near future.

In § 1 we establish some notation and prove feome elementary
results needed in the sequel. In § 2 we define the concept of Hopf-
C*-algebra and prove that two isomorphic Hopf-C*-algebras have
isomorphic intrinsic groups. We end up this section stating without
proof a theorem that characterizes all isometric (algebra) isomorphism
between the duals (as Banach spaces) of two cocommutative Hopf-
C*-algebras. The last section is devoted to proving that we can
associate to each locally compact group G a Hopf-C*-algebra whose
intrinsic group is isomorphic and homeomorphic to G.

We take this opportunity to thank Marc A. Rieffel for his nu-
merous suggestion and constant encouragement.

l Notation and preliminaries* If X is a set and K is a sub-
set of X, we denote by Xc the set theoretic complement of K; if
/: X -> Z is a function from X into a set Z the restriction of / to
K is denoted by f\K. By lκ we mean the characteristic function
of K. If X is a locally compact Hausdorff space, we denote by
C0(X) (respectively, C^X)) the algebra of all complex-valued conti-
nuous function on X with compact support (respectively vanishing
at infinity).
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All vector spaces are over the complex numbers. If B is a
Banach space, we denote by B* its dual space. If Φ: Bx —> B2 is a
linear map between Banach spaces, the transpose of Φ, denoted Φ\
is the map Φι\ ΨeB% ->ΨΦ eB?. If B is a commutative Banach
algebra we denote its spectrum by σ(B); as a set we take it to be
the set of all nonzero complex-valued homomorphisms of B.

If Sίf is a Hubert space, we denote by ^ ( ^ ) the algebra of
all bounded operators on £%f. Inner products are always denoted
by ( | ) or by ( | )^ when we want to emphasize the Hubert space
we are working in. If X^k&^Sff), we denote by X' its commutant.

If A is a C*-algebra and π is a ^representation of A in some
Hubert space, we denote this Hubert space by ^ίfx. The set of all
positive elements of A is written A+. If A has an identity element,
we denote it by 1A. If A is a von Neumann algebra, then A*, Ar,
Au denote the predual of A, the set of all invertible elements in A
and the group of all unitaries of A respectively.

All topological groups are assumed to be Hausdorff. Approxi-
mate identities are always assumed to have norms bounded by 1.
By an isomorphism we mean a bijective homomorphism.

Let A be a C*-algebra. We denote by M(A) the algebra of all
double centralizθrs on A (see [2] for the definition and properties of
double centralizers). It is well known that M(A) can be identified
with the idealizer of A in A** (i.e., the largest C*-subalgebra of
A** in which A is a two-sided ideal) and we will use this identi-
fication whenever convenient. The strict topology of M(A), denoted
S(M(A): A), is the locally convex topology generated by the family
of pseudonorms {λα, pa: ae A}, where λα(δ) = | |αδ| | and pa(b) — | |δα||,
be A. It follows (cf. [2]) that S(M(A): A) is a Hausdorff topology,
A is S(M(A): A) dense in M{A) and that M{A) is S(M{A): A)-complete.
It is easy to see that any net in M(A) coverging strictly (i.e., in
the strict topology) must converge in the weak* topology of A**.

PROPOSITION 1.1. Let A, B be C*-algebras and let Ψ: A-*M(B)
be a *-homomorphism. Then:

( i ) There exists a unique weakly"" continuous ""'homomorphism
Ψ: A** -> B** extending Ψ.

(ii) If there exists a net {ê } Q A such that W(eχ) —> 1M(B) in the
strict topology of M(B) then f(M(A)) Q M(B), Ψ\M(A) is the unique
*-homomorphism from M(A) into M{B) extending Ψ and

(1.1) Ψ(x) = strict - lim Ψ{xzλ) = strict - lim Ψ(zλx)

for all xeM(A). Moreover, if (ex) is an approximate identity for

A, then Ψ(1MU)) =
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(iii) If Ψ(A)^B, then there exists a net {ê }£A with Ψ(eλ) —•
ljf<2?> strictly.

(iv) Ψ\MU) is 1-1 if and only if Ψ is 1-1.
(v) If Ψ: A—> B is a *-isomorphism, then Ψ\M{A): M(A)—> M(B)

and Ψ:A** —>!?** are also ^-isomorphisms.

REMARKS. (1) Assuming the existence of a net {eλ} with
Ψfa) —> lMlB) strictly one can prove directly (i.e., without using
double duals) that Ψ can be extended to a *-homomorphism Ψ: M(A)—>
M{B) by

Ψ(x)b = lim

bf(x) = lim

for x e M(A), beB. Moreover this extension is unique. The proof
is very easy once one knows that any *-homomorphism Ψ: A —• M(B)
satisfies

\\Ψ{xadb - Ψ(xa2)b\\ ^ \\x\\ \\W(adb -W(a2)b\\ ,

0)\\ ^ ||a?|| \\b¥(ad - bΨ(a2)\\ ,

for all au a2eA,beB,xe M(A).
(2) The existence of a net as above is necessary even for the

commutative case if we wish to get a unique extension f": M(A) —•
M{B). E.g., let A = CJR), B = C - Λf(C), f: A -^ Λf(5) the zero
map. Of course the zero map M(A) -> M{B) extends Ψ. Let us
show there are other *-homomorphisms extending Ψ. Let βR be
the Stone-Cech compactification of R. Then M(A) = C(^/ί) = Cb(R),
where Cb(R) is the set of all bounded continuous functions from
jβ into C. Let xoeRc. Every function feA extends uniquely to
/ e M(A) with f(x0) = 0. Define Ψ: M(A) -+ M(B) = Cby Ψ(f) = f(x0).
Then Ψ is a *-homomorphism extending Ψ and Ψ Φ 0.

Proof of proposition 1.1. (i) follows easily from [3; 2.1]. As
for (ii), assume {ej £ A is a net with Ψ(tλ) —> l j^ , strictly. Let

^ ) , say « = Ψ(x), x e M(A). Then, for all b e B,

zb^z lim Ψ(zx)b - lim Ψ(x)Ψ(zλ)b - lim ?Γ(α;e,)6 e B

(since a ^ e A ) . Similarly,

6̂ ; = lim bΨ(zxx) e B .

Thus zeM(B); moreover, for all beB,

limbΨ(xeλ) = lim(6«)y(e,) = δz ,

lim y(eaa?)δ = lim
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so that (1.1) holds. The uniqueness is an easy corollary of (1.1).
Now assume that {eλ} is an approximate identity for A. Then
*x —> ljf(̂ L) strictly, so in particular eλ —> 1M[Λ) in the weak* topology
of A**; but Ψ is weakly* continuous, so Ψ(^ι) —>Ψ(XM{A)) weakly.
Since W(ex) -> 1 ^ strictly, we get f(lMU)) = W ) and (ii) holds.

If Ψ{A) 2 B, let {nλ: λ e Λ} Q B be an approximate identity for
B. Choose eλeA such that rfe) = nx for all λeΛ. Then {eλ:XeΛ}
is the desired net and (iii) follow.

As for (iv), clearly if Ψ\MA) is 1-1, then Ψ is 1-1. Suppose that
Ψ is 1-1: if x e M(A) and Ψ{x) = 0, then αα, axe A and ?F(a;α) =
Ψ(x)Ψ(a) = 0 = y(αaj) for all α e i , so that a? = 0.

Suppose Ψ: A -» 5 is a ^-isomorphism. Applying (ii) and (iii) to
f* and Ψ"1 and using the uniqueness of the extensions given by (i),
we get Ψ(M(A))QM(B), {Ψ~T{M{B))^M{A) and f(ψ-ψ, (Ψ~ψΨ are
the identity maps on 5**, A** respectively. Hence the proposition
follows. •

REMARK 1.2. The above proposition remains true if we change
all "homomorphisms" to "anti-homomorphisms": just consider the
C*-algebra B° opposed to B (i.e., B° has the same underlying Banach
space but its multiplication is given by (x, y) —> yx) and compose Ψ
with the natural mapM(5) -> M(B°).

Let A and B be C*-algebras and let A®B be their algebraic
tensor product. If a is a norm on A®Bf the completion of Ar )B
with respect to a will be denoted A®αJ5; the dual norm of a [9]
will be denoted by α*. We will denote by a0 the least C*-norm
among all C*-norms on A( )B having finite dual norms. It follows
that a0 and a* are cross norms and a0 is equal to Guichardet's
*-norm (cf [9], [7]). We will denote by v the l.u.b. of all C*-sub-
cross pseudonorms on A®B; v is in fact a C*-cross norm on A( )B
[7]. Since we will use this norm most of the time, we will denote
the completion of A®B with respect to it simply by A (x) B. Gui-
chardet [7] proved that if G is a locally compact group with C*-
algebra C*(G), then C*(GxG) ~ C*(G) (x)C*(G).

If A and B are von Neumann algebras, we will denote their
usual tensor product by A®B. It follows that

PROPOSITION 1.3. Let A and B be C*-algebras. Then there ex-
ists a unique weakly* continuous surjectίve *-homomorphism
j : (A(x)i?)**-^ A**(R)i?** extending the identity on A®B.

Proof. Let C = A®B and let p, λ, π be the universal represen-
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tations [3; 2.7.6] of A, B, C respectively, generating the von Neu-
mann algebras 9ί, 3S, S. Then p (g) λ extends to a nondegenerate
^-representation, also denoted p<S)X, of C on S$fp (g) £ίfλ generating
the von Neumann algebra SI(g)a3 [7]. We then have the following
commutative diagrams (cf [3; 12.11]):

^ r σ

A B

where θ,τ,σ are weakly* continuous ^-isomorphism and (/0(g)λ)~ is
the unique sur jective normal *-homomorphism satisfying {p®X)~π —
p(x)X. Also, θ (g) τ defines a weakly* continuous *-isomorphism
θ (g) τ: Sί (g) S3 —> A** (g) S**. Hence we can define a surjective weakly*
continuous *-homomorphism 7 by 7 — (β ® r)(/o (x) λ)^" 1 : C** =
( A ® ^ ) * * ^ ^ * * ® ^ * * . It is clear that γLo* is just the identity
map. The uniqueness follows from the weak* density of A®B in
(A®1?)** and the weakly* continuity of 7. •

Again let A and J5 be C*-algebras. Since A and B can be
naturally identified with two-sided ideals in M(A) and M(B) respec-
tively, A(g)B can be identified with a two-sided ideal in M{A) ® M{B)
[7, Corollary 5, page 31]. Thus, by Proposition 3.7 of [2], there is
a unique *-homomorphism μ: M(A) 0 M{B) —> M(A ® B) such that
i"L<g)jB coincide with the natural embedding A (x) 5 ^ ikί(A ® B). At
this point it should be remarked that we do not know when μ will
be injective; we believe that ker μ Φ {0} in general. Of course, if
A and B are commutative, then μ is injective since in this case
v = a0 (see [9]). Even in this case μ will not be surjective [1]. In
any case,

Ker μ = {x e M(A) (g) M(B): x{A (g) B) = 0}

and ^ is continuous with respect to the strict topologies S(iIf(A)(x)
AΓCB): A®B) and S(M(A (x) 5): A (g) J5).

•2* Hoρf-C*-algebras* In this section we define the concept of
Hopf-C*-algebras and study some of their properties. We remark
that our "Hopf-C*-algebras" are not Hopf algebras in general since
the comultiplication takes values in M(A (x) A) instead of A (g) A as
is the case for Hopf algebras.

Let A be a C*-algebra and let d: A —> M(A 0) A) be a *-homo-
morphism. As we have seen in the end of § 1, there are *-homo-
morphism
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Ψλ: M(A(g)A) ® M{A) > M(A ® A ® A) ,

Ψ2: M(A) ® M(A (x) A) > M(A ® A

Since A is a two-sided ideal in Λf(A), Λf(A® A)® A and
can be identified with two-sided ideals in M(A ® A) ® M(A) and
M"(A) ® M(A (x) A) respectively, [7, Corollary 5, page 31], so we can
define

¥x(d (x) /), Ψ2(I(g)d): A® A > M(A (x) A (x) A) ,

where I: A —> A is the identity map. By Proposition 1.1, these maps
extend uniquely to normal *-homomorphisms

Wi(d (x) J)Γ, [y2(I(8) d)]~ (A (x) A)** > (A ® A (x) A)** .

LEMMA 2.1. Lβί A be C*-algebra and let Ψίf Ψ2, d be as above.
Assume there is an approximate identity {eλ: Xe Λ}QA with
dfa) —> 1.MU&A) strictly. Let Γ = A x Λ and define a partial order
in Γ by

j , λ2) ^ (λ3, λ4) if and only if λx ^ λ2 α^cί λ3 ^ λ4 .

7 = (λ^ λ2) 6 Γ, let ur = e^ (x) e 2̂. T/ί,e9t {ur: 7 6 Γ}

proximate identity for A® A and ^ ( d ® / ) ^ , f2(/(g)d)ur

strictly. In particular

[Ψ1{d®DY{M{A ® A)) S M(A ® A ® A) ,

[Ψ2(I ® d)]^(M(A ® A)) £ ikf(A (g) A (g) A) .

Proof. The proof that {ur: 7 6 Γ} is an approximate identity
for A® A and that ^ ( d ® / ) ^ , ^ ( 1 ( 8 ) ^ ) ^ - ^ 1 ^ ^ ^ ^ strictly is
straightforward. The last part of the lemma is just part (ii) of
Proposition 1.1. •

Let τ: A® A-+ A(x) A be the automorphism defined by r(α(x)δ) —
b ® α, α, 6 6 A. Let f: (A ® A)** -> (A ® A)** be the extension of r
given by Proposition 1.1. Then f is a weakly* continuous ^iso-
morphism with τ2 equal to the identity map and τ(M(A ® A)) =
M(A(x)A).

REMARK ON NOTATION. From now on, if Ψ\ A-+B (or Ψ: A —>
M(B)) is a *-homomorphism or a *-anti-homomorphism, A and j?
C*-algebras, we will denote by Ψ the extension to the double duals
given by Proposition 1.1 or Remark 1.2; if 9(M(A))£=M(B), we will
denote by Ψ the meφΨ\MU)\M(A)->M(B).
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DEFINITION 2.2. Let A be a C*-algebra and let Ψlf Ψ2 be as
above. We say that {A, d} is a Hopf-C*-algebra if and only if:

( i ) d: A —> M(A (g) A) is a 1-1 *-homomorphism;
(ii) there exists an approximate identity {eλ:\eΛ}QA with

d(eλ) —• ljHAZA) s t r ic t ly ;

(iii) (coassociativity) the following diagram is commutative:

A <—d M(A (x) A)

(2.1) dj

M(A (x) A) — -> M(A(5<) A (x) A) .
[Ψ\I(&d)r

We call d a comultiplication. By an involution of {A, c£} we mean
*-anti-isomorphism j : A —>A of period two satisfying

(2.2) {j®j)~d = τdj .

If there is such a i, we say that {A, cZ, i} is an involutive Hopf-
C*-algebra. We say that {A, (Z} is cocommutative (also called sym-
metric by some authors) if and only if τd = d. If e: A —> C is a
nonzero *-homomorphism satisfying

(2.3) (ε (x) /)~d = I = (I0ε)~d ,

we say that ε is a coidentity for {A, eϋ}. In the case {A, d} has
both an involution j and a coidentity ε, we write {A, d, j, ε}.

REMARK. Condition (ii) of the above definition insures that
d: A**->(A(x)A) preserves identities, that d: M(A)->M(A®A) is the
unique *-homomorphism extending d and that [^i(d®I)]~(Λf(A®A)) Q
M(A0 A(x) A), [?F2(J(8)cZ)Γ(ikί(A(g)A))SM(A(g) A® A) (these inclusions
are not needed in the sequel; we include them here simply to show
that we can stay in the double centralizers algebras). In the case
of Hopf-von Neumann algebras, the comultiplication preserves iden-
tities by assumption (see [5]).

DEFINITION 2.3. Two Hopf-C*-algebras {Alf d}, {A2, d2} are iso~
morphic if and only if there exists a *-isomorphism θ: A1 —> A2 with
(β ® θ)~d1 = dφ. If {Alf dlf j\} and {A2, d2, j2} are involutive Hopf-
C*-algebras we require further that θj\ = j2θ. If the Hopf-C*-algebras
have coidentities εl9 ε2, we also assume that εx = e2θ.

PROPOSITION 2.4. Let {A, d) be a Hopf-C*-algebra. If ψ,ηe A*,
define a linear functional ψη on A by <α, ψη) = (d(a), ψ®η), aeA.
Then the map m: (ψ, 7f)eA*xA*-*ψτje A* defines a multiplication
in A* making it a Banach algebra. Moreover, if {A, d} is cocom-
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mutative, A* is commutative and if {A, d) has a coidentity ε, ε is
the identity of A*.

Proof If ψ, 7] 6 A*, then ^ (g) 7? e (A (x) A)* with || f (g) η\\ =
llψ^ll, so it makes sense to define ψη as above. It follows that
|5yeA* with | |ψ^ | | ^ ll?Hill^ll Since m is clearly a bilinear map,
to show that A* is a Banach algebra it is enough to prove the as-
sociativity of m. We claim that for all x e (A (x) A)**, ψ, φ, η e A*,
we have

(2.4) <&, ̂  (X) τ?>

(2.5) <a?, f (g) ̂ > = <[?r2(J (g) d)Yx, ψ(g)φ0V> -

We will prove (2.4); (2.5) can be handled in a similar way. Since
[Φi(d ® I)Y is weakly* continuous and A®A is weakly* dense in
(A (g) A)**, it is enough to show (2.4) holds for x e A®A; by linearity,
it suffices to consider x = α (g) 6, α, 6 e A. So let £ = α (g) 6, α, 6 6 A,
and let ψ,φ,ηeA*. By Theorem 2.1 of [10], we can write ψ =
f-ψ', Φ = ^-^', ίy = h-Tj\ where /, g,heA and ^', ̂ ', )y' e A*. Then:

(x, ΨΦ ® V> = <

= <d(a),f ψ'(g)g.φ')(b,h 7]') =

= <d(α)(/ (g) fir) (g) δλ, f (g) ̂ ' (g) ̂ ;> = <[5Γ

1(d (g) /)(α (g) b)]

® h), ψ'(g)φ'(g) η'}

- {[ΨM (g) /)Γa?, f (g) ̂  (g) 5?> .

Hence (2.4) follows. We are now ready to show the associativity of
m. Let aeA,ψ,φeA*. Using (2.1), (2.4) and (2.5), we get:

Thus (ψ$)^ = ψ^(^) for all ^, ^, ̂  e A*, so m is associative and A*
is a Banach algebra.

Suppose {A, cZ} is cocommutative. It is easy to see that (x,
ψ (g) φ = <?(&), ηd&ψy for all a e (A (g) A)**, α/r, η e A*. Hence, if
ae A and α/r, 976 A*,

® > < μ \ V

so that ψη = ^ψ for all ψ*, 57 6 A* and thus A* is commutative.
Finally assume {A, d) has a coidentity ε. We claim that
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(x, ε (g) ψ) = <(ε (x) J)~#, f) ,

<&, ψ> <g> ε> =

83

(2.6)

(2.7)

for all #e(A(g) A)**, ψ* e A*. Again we will only prove (2.6) and it
suffices to work with x = a (x) δ, α, 6 e A. But in this case,

O, ε <g> f> = <α, ε><6, f> - <ε(α)6, f> - ® 6), f>

so (2.6) follows. Now, if α e i and f e A * , using (2.3), (2.6) and
(2.7), we get:

, ε(x)f> - <

so that eψ — ψτ=ψε for all | e i * , i.e., ε is the identity of A*. •

REMARK 2.5. If #eA** and f ,5?6i*, then (x} ψη) = (d(x),

Let {A, d} be a cocommutative Hopf-C*-algebra. It is well
known that the spectrum σ(A*) of A* is locally compact and it is
contained in the closed unit ball of A**. If ε is a coidentity for
{A, d), then σ(A*) is compact and contained in the unit sphere of
A**. Note that in this case (xf ε> = 1 for all xeσ(A*): indeed,
(x, ε> = (x, ε2> = (x, ε>2, so (x, ε> is either 0 or 1; but if (x, ε> = 0
we have, for all ψ e A*, (x, ψ) = (x, ψε) = {x, ψ)(x, ε> = 0, so x = 0,
a contradiction; hence (x, ε> = 1.

Denote by e the identity element of A**. Let 7: (A® A)**—>
A**(g)A** be the weakly* continuous surjective *-homomorphism
given by Proposition 1.3.

LEMMA 2.6. Let xe (A (x) A)**, ψ, rje A*.

)fψ®V>> w h e r e t(x)v??e(A(x)A)** and ψ
®*«0 A*[9] are ίfee natural extensions of <f

Then (xt

)oy 6 ( A * *
η: A®A C.

Proo/. Let ice (A (g) A)**. Pick a net {» 2 }£40A converging
to a? in the weak* topology of (A® A)**. Since 7 is weakly* con-
tinuous and coincides with the identity map A® A, we get:

(x, = lim = lim

PROPOSITION 2.7. α (A*) = {x e A**: cc Φ 0 α^d 7d(») = » ® «}. Jί

follows then that <τ(A*)U{0} is a monoid (i.e., α semigroup with
identity) under the multiplication inherited from A**. Also, if
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x e σ(A*), then x* 6 σ(A*) and if {A, d) has a coidentity, then σ(A*)
is also a monoid.

Proof. Let xeσ{A*) and let Φ e i * ® 4 * , say Φ =
Applying Lemma 2.6 and Remark 2.5, we get

<7d(x), Φ) = Σ <7d(x), ψt (x) ηty = Σ <d(x), ψi ® Vi)

= Σ <*, Vi7*> = Σ <«, f <><*, 7*> = Σ
= <x 0 *, φ).

Thus 7<J(ίc) and x ® x, considered as linear f unctionals on (A**(g)̂ 4.**)*,
agree on A*®A*; but (4**<g) A**)* = A* ®*A* so A*®^.* is norm

dense in (A** (x) A**)* and hence τd(») = % ® a?. Conversely, if
— α;®^, applying again Remark 2.5 and Lemma 2.6 we get

(x,

for all ψ>, 97 e A*; thus, if x Φ 0, x eσ(A*). Also, if xeσ(A*), then
x* Φ 0 and γd(#*) = d(α )* = (a?® a;)* = x*®^*, so x*eσ (A*).

As remarked before, property (ii) of Definition 2.1 implies that
d(t) = lifu®^; since 7 is surjective, Ύ(1MU®A)) = e® e, so τ<?(e) = e(x)c
and therefore eeo^A*). If a?, 3/ 6 σ(A*)9 then

jd(xy) = yd(x)yd(y) = (x(x)ic)(?/(g)?/) = xy®xy ,

so #?/ 6 σ(A*) U {0}. Thus tf(A*) U {0} is a monoid. Moreover, if ε is
a coidentity for {A, d}, ε is a *-homormorphism, so

(xy, e) = έ(a;i/) = e(x)ε(y) = 1

for all x, y eσ(A*). Thus in this case #2/ 7̂  0 and σ(A*) is a
monoid. Π

LEMMA 2.8. If xe σ(A*) is invertible, then x is unitary.

Proof. Let us show first that x'1 eσ(A*). We have:

so x^eσζA*). Now cc*x is also invertible, so x*x, (x*x)"1eσ(A*);
hence ||α?*a?|| £ 1 and IK^a?)"1!! ^ 1, so ||a?*a?|| - 1 - IKΛΓ1!!. Con-
sidering the commutative C*-algebra generated by x*x and (x*x)"1

9

we see that x*aj correspond to a strictly positive function / with
11/11̂  = 1 = H/^IU. But then / = 1, so x*x = e. Similarly we get
||a;a?*|| = 1 = IKa a?*)""1!! and so xx* — e. Hence x is unitary. •
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Now let H == σ(A*) Π A?*. By the preceding lemma, H = σ(A*) Π
At*. It follows that H is a topological group with respect to the
weak* topology of A**. By Proposition 2.7, we get

(2.8) H = {x e A**: yd(x) = x (x) x) .

H is called the intrinsic group of {A, eZ}. We remark that even if
the Hopf-C*-algebra {A, d) is not cocommutative we can define its
intrinsic group H by (2.8); it is always a topological group. We
then have the following proposition.

PROPOSITION 2.9. // {Au dj, {A2, d2} are two isomorphic Hopf-
C*-algebras with intrinsic groups Hu H2 respectively, then H1 is
isomorphic and homeomorphic to H2.

Proof. Let θ: At -> A2 be a ^-isomorphism with (θ (x) θ)~dx = d2θ.
Then (θ (S) θΓdλ = d2θ and 0: Af* -> A2** is a weakly* continuous
^-isomorphism. It is clear that 9\Hι: Hx —»^(£Zi) is a homeomorphic
isomorphism, so all we have to show is taht Θ(H^) — H2. Let
yt: (At (x) At)** -> Af* (g) A?*, i = 1, 2 be the surjective *-homo-
morphisms given by Proposition 1.3. It is easy to see that

Now if x 6 i/j, then jβ^x) = x (x) a?, so

72d2£(α0 - 72(^ (8) θΓdx(x) =

also &(») is unitary (since θ is a *-isomorphism and α; is unitary),
so θ(x) e ίί 2 . Hence Θ{H^) S iϊ2. Applying the same argument to θ~ι,
we get B{Hd = ^ 2 . D

The argument used in part (i) of the following proposition was
suggested to us by Marc A. Rieffel.

PROPOSITION 2.10. Let {A, d) be a cocommutative Hopf-C*-
algebra. Then:

( i ) σ(A*) is a linearly independent set in A**.
(ii) //A* is semisimple, then σ(A*) generates A** as a von

Neumann algebra.
(iii) If j is an involution for {A, d}, then jι is an isometric

automorphism of A*.

Proof. Suppose (i) does not hold. Let

= Σ
ί

be a dependency relation of shortest length among elements of



86 VALERIA DE MAGALHAES IORIO

σ(A*), x Φ xx and at Φ 0 for all i = 1, , n. Then, by Proposition
2.7,

yd(x) = Σ

Since the a?< are linearly independent, so are the xt (g) xs\ hence
ata5 — 0 it i Φ j and α = at for all i = 1, , n. Since at Φ 0 for
all ΐ, we get n = 1 and αx = 1, so that x — xι acontradiction. This
proves (i).

As for (ii), represent A** faithfully as a von Neumann algebra
in some Hubert space Sίf, i.e., A** £ &{3ίf). Since cr(A*) is self-
adjoint, the von Neumann algebra generated by σ(A*) in &(£ίf) is
σ(A*)", the double commutant of σ(A*). Clearly σ(A*)" £ A**. We
want to show A** £ <7(A*)". Let yeσ(A*)' and let f e ^ ( ^ ) , .
Defide two linear functionals ^ , τ/r2 on A** by

<a, f !> = (xy, ψ) and <», ψ2) = <i/», f >

for all #eA**. Since α/r is σ-weakly continuous, ψl9ψ2eA*. If
x e σ(A*)f then <a?, ̂ > = (xy, ψ) = <^, ^> = <Λ5, f2>, so <x, ψt- f2> = 0
for all α?6σ(A*). Since A* is semisimple, ^ — ψz and (xy,ψ) =
(yx, ψ> for all #eA*. But ψe^(<%^)* was arbitrary, so ## = ##
for all ajeA*. Hence A** Qσ(A*)". This proves (ii).

Finally let j be an involution for {A, d}. Since j is a bijective
linear map, so is jK Also, by cocommutativity of {A, d}, equation
(2.2) becomes

(2.9) (j®j)-d = dj .

Now let α e A, ψ, η e A*. Using (2.9) we get:

(a, 3*(ψy)> = O'(α), f5?> = <rfi(α)f ψ ® η)

Hence j\ψφ — ̂ WJKv) f° r a ^ Ψ> ̂ β A*, so i* is an automorphism
of A*. It is in fact an isometry since j is a surjective isometry. •

REMARK. We have also characterized all isometric (algebra) iso-
morphisms between the duals (as Banach spaces) of two cocommu-
tative Hopf-C*-algebras. Since we will not need this result in the
sequel, we will state the theorem without proof. We remark the
theorem can be proved using an argument due to Martin Walter;
he proved the same type of theorem when the algebras are Fourier-
Stieltjes algebras of locally compact groups (cf. [11; Theorem 2]).
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THEOREM 2.11. Let {Aif dt), i — 1, 2, be cocommutative Hopf-C* -
algebras and let Φ: A* —> Af be an isometric isomorphism. Denote
by Hi the intrinsic group of {Aif dt}, by σ(A*) the spectrum of Af
and by et the identity element of At*. Then xo = Φ\e2)eH1 and
there exists a ^-preserving weak* homeomorphism a: A** —> A?* such
that:

( i ) (x, Φ(ψ)> = (xoa(x), f > for all x e At*, ψ e AT;
(ii) a(σ(A?)) = σ(Af);
(iii) a(H2) = Hi;

(iv) OL\H2'- H2 —> Hι is either an isomorphism or an anti-iso-
morphism.

3. The algebra C*(G) as a Hopf-C*-algebra* Let G be a
locally compact group and let ^C(G) be the algebra of all regular
Borel measures on G. It is well known that ^#(G)f as a Banach
space, is isometrically isomorphic to CJ&)*. Whenever convenient,
we will identify ^{G) with CJβ)*. We fix a left Haar measure
on G. Integration with respect to it will be denoted by d% and
integrals without explicit domains of integration are to be taken
over G. We identify L\G) with the measures in ^t(G) which are
absolutely continuous with respect to the Haar measure.

Let Σ(G) denote the family of all strongly continuous unitary
representations of G. It is well known that every π e Σ(G) extends
to a ^representation of ^€{G), also denoted by π, which is nonde-
generate when restricted to L\G), defined by

(3.1) (π(μ)ζ\v) = JfrWδl?) dμ(S) ,

μ e ^T(G), ξ, -η e ^fκ. If μ e ^T(G), define

(3.2) lli"l|β* = Bupίi|π(Ai)||: πeΣ(G)}.

Then || lie* define a seminorm in ^£(Gr) which is actually a norm,
since the left regular representation of G is faithful on ^J?(G). It
is in fact a C*-norm, since it is the supremum of C*-norms. The
completion of L\G) with respect to this norm is called the
C*-algebra of G and denoted by C*(G). We will denote by
the completion of ^€(G) with respect to || ||β.. Note that

As we have remarked before, Guichardet [7] proved that
C*(GxG) = C*{G) (g) C*(G). Our goal in this section is to show that
we can define a comultiplication d: C*{G) —> M(C*(G x G)), an involu-
tion j : C*{G) -> C*{G) and a coidentity ε: C*(G) -> C so that {C*(G),
d, i, s} is a cocommutative involutive Hopf-C*-algebra with coidentity.
We will show also that G is isomorphic and homeomorphic to the



88 VALERIA DE MAGALHAES IORIO

intrinic group H of {C*(G), d), so that this Hopf-C*-algebra deter-
mines the group. We remark that we need neither the involution
nor the coidentity to show that G = H, although we believe they
will be needed in the characterization problem.

Let A be the family of all neighborhoods of the identity e of
G. We fix an approximate identity {eλ: XeΛ}Q L\G) for L\G) (in
the ZΛ-norm) satisfying

( i ) e,^0;
(3.3) ( i i ) eλ = 0 on λc;

(iii) je,(3)(Z$ = 1.

It is clear that {ê } is also an approximate identity for C*(G).
If μ e ^€(G), it is easy to see that the maps Lμ, Rμ: L\G) ->

L\G) given by

Lμ(f) = μ*f and Rμ(f) = f*μ , feL\G),

extend to bounded linear maps L μ , Rμ: C*(G) —> C*(G) w i th \\Lμ\\ ^
\\μ\\c* and \\Rμ\\ ^ \\μ\\c*. I t follows t h a t Tμ = (Lμ, Rμ)eM(C*(G))
and that T: μ e ^T(G) -> Tμ e M(C*(G)) is a *-homomorphism. Thus
\\Tμ\\ == \\Lμ\\ = \\Rμ\\^ \\μ\\e*. A s tandard a r g u m e n t shows t h a t T
is in fact an isometry with respect to the norm || ||c* on ^€(G), so
it extends to an isometric ^-isomorphism T: C*(^^(G)) —• M{C*(G))
preserving identities. Hence we can identify ^£{G) and C*(^(G))
with subalgebras of M(C*{G))9 and we will do so whenever conveni-
ent.

If K is a closed subgroup of a locally compact group H, then
^€{K) can be naturally embedded in ^//(H) as a *-subalgebra:
given μe^£{K) define μe^f{H) by μ(E) = μ(Ef)K) for all Borel
sets EQH. If μe^/ί{K),πeΣ{H) and ρeΣ(K) is the restriction
of 7Γ to iΓ, then

(3.4) (τr(/Z)£|i7) - ( (π(g)ζ\V)dfi(β) = ί

for all ζ, η e ^ π = ^ ^ . It follows that the embedding μ -> // is
continuous (in fact norm decreasing) with respect to the C*-norms
of ^£{K) and ^(H). Moreover, if every peΣ(K) is the restric-
tion of some π e Σ(H), then (3.4) implies that the map μ —> μ is in
fact an isometry with respect to the C*-norms of ^€{K) and

so it extends to an injective *-homomorphism

Now suppose H=GxG and iΓ = {(jc, j): ϊ eG}. Note that in
this case every peΣ(K) is the restriction of some πeΣ(H) (e.g.,
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define π(ι, ij) = p(%, j), £, tyeG). Since K is isomorphic and homeo-
morphic to G we get a 1-1 *-homomorphism d: C*(^€^(G)) —>
M(C*(GxG)) with d(^t(G))Q^f(G x G). To simplify notation, let
A = C*(G). Since A(g)A~ C*(G x G) and A is a C*-subalgebra of
C*(c^(G)), restricting cϊ to A we get an injective *-homomorphism
d: A->M(A(g)A).

Let μ e ̂ C(G) and let μ = d(μ) e ̂ f(GxG). It is easy to check
that for all feL\G x G) and for a.e. (j, $) e G x G we have:

(3.5)

where J is the modular function of G. (In the last equation of
(3.5) we get Δ^f because ΔQXQ{ι, ί)) - (ϊ)J(ij) for all j , $eG.)

Let ^ r M(A ® A) (g) Λί(A) -* M(A (g) A (g) A) and r 2 : Λf(A) ®
M(A ® A) —> Λf(-4 0 i 0 i ) be the (unique) *-homomorphism ex-
tending the natural injection A® A(x) A^ M(A (g) A® A) (see end
of §1). If μe^t(G)QM(A) and ve^(GxG)QM(A(g)A), it is easy
to check that Ψx{v® μ) = vxμ (the product measure) and Ψ2(μ(g)v) =
μ X v.

LEMMA 3.1. IfgeL\G x G), ίfc<m Ψ^d^^g, Ψ2(I0d)g
GxG)f where I: A^A is the identity map (recall that A = C*(G)).
Moreover, if FeL\G xGxG) we have, for a.e. (jc, t), 3) 6 G x G x G:

), 3) -

(3.6)

^, 5) - , t)dzdt

δ(8, t) =
function of G.

all and A is the modular

Proof. We will prove the first two equalities; the other ones
can be handled similarly. To simplify notation, let Ψ = Ψλ{d (x) I).
Given g e L\G x G), approximate g in the ZZ-norm by a sequence
{fir,} £ L\G)®L\G). Then 0Λ->flr in A ® A so ψ(gn)-+φ(g) in
M(A(x) A). Define a linear functional ^ on CUG x G x G) by
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^iG x G x G). It is easy to see that this defines a bounded
linear functional with \\θ\\ ^ \\g\\ι Under the identification ^f(Gx
GxG) = CTO(G x G x G)*, 0 corresponds to a regular Borel measure
thai we will denote again θ. Using equations (3.5) it follows easily
that

\\ψ(gn)*F - Θ*F\\1 S \\F\l \\gn -

\\F*φ(gn) - F*θ\\1 £ \\FMg, -

0

0

for all FeL\G X G X G), SO that ψ(gn)-+θ strictly. Hence ψ(g) =
θe^€(GxG). The first two equations now follow from the defini-
tion of θ. •

COROLLARY 3.2. If v e ^£(β x G),ge L\G x G) and FeL\G x
GxG), then, for a.e. ( j , y ) 6 ( ϊ x G x G, we have:

(3.7)

where δ(S, t) =

I)g*F](β-% 2-%

, J), 5)

ί?XG

= \ [¥,(1 (g) d)flr *

δ(t, i)[F* Ψ

iβ, t)

αii δ, t G G.

, t)

, t)

-ι)dv(β, t)

LEMMA 3.3. (ê ) converges in the strict topology of M(A(g)A)
to the point mass 8^^ at the identity (e, e) of G x G.

Proof. Using the definition of d, (3.3) and Theorem 20.15 of
[8], it follows that d(eλ)*g —> g and g*d(eλ) -»g in the L^norm for
all geL\GxG). Since || ||c* ^ || ||i and L\GxG) is dense in C*(GxG)
we get the desired result. •

LEMMA 3.4. // ve^(GxG), ίλβw (^(d® / ) ) » , {Ψ,{I®d))~
(v) e ^€{G x G x G). Moreover, if FeL\G x G x G), we have for
a.e. (Ϊ, t), 3) e G x G x G
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), 8) = [ F(8~% S-% t-^)dv% t)
JGXG

>, 5) - \ 8(8, t)F(&'\ ψ~\ ^)dv(§, t)
JGxG

j , 8) = ί ^(8-% t ^ , t"ι8)dy(β, t)
JGXG

[F* (Ψt(I <g> d))-(υ)](ϊ, 9,8) = t δ(t, β)f (χβ-S JjΓ1, 8 0 ^ ( 8 , t)

where δ(β9 t) = A^fA^1) for all δ, t 6 G.

(3.8)

)GXG

Proof. Again we will just prove the statements for
ψ = Ψλ{d(g) J). Let {ê : XeΛ}QL\G) be as before and let Γ = ΛxΛ.
For 7 = (λx, λ 2)eΓ, let ur = e^® e .̂ By Lemma 2.1, {ur} is an ap-
proximate identity for A(g)A = C*(GxG) and ,^(ur) —»δ(e,e>e) strictly
in M(A(x)A® A). By part (ii) of Proposition 1.1, we get

(3.9) ψ(v) = strict — limα^(v*ur) — strict — limψ(ur*j;) .

Also, as we have seen in the proof of Lemma 3.3, d(eλ)*g -+g and
g*d(eλ)->g in the ZΛ-norm for all g eL\G xG). Then it follows
easily that <f(\xr)*F-^ F and F*φ(μr) -* F in the L^norm for all
FeLXGxGxG).

Now let v e ^£{G x G) and define ΰ e ^£{G x G x G) = CJfi x
GxG)* via the linear functional

, t) ,

PeC^GxGxG). Using Corollary 3.2, the definition of v and that
ψ<ur) -> δ(e,e e) strictly we get

0 and || F* ψ(nr^v) — F^v\\x >0

for all FeL\G xGxG). Hence ψ(v*VLγ)F-+vF and Fψ(v*ur)
for all FeA(g)A® A. Thus, by (3.9)

ψ(y) = ve ^£{G xGxG) .

The first two equations in (3.8) now follow firom the difinition of v.

D

COROLLARY 3.5. |Y2(I® d)]~d - [^(d ® I)Yd.

Recall that r:A(x)A->A(g)A is the automorphism given by
r(α ® 6) = & ® α, α, 6 e A.

LEMMA 3.6. I / v e ^ ^ ( G x G ) , ί&ewτ(v) e ^ ( G x G )
v(E°) for all Borel sets EQGxG, where E° = {fo, jc): (j,
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Proof. Let {ur:7eΓ} be as in the proof of Lemma 3.4. It
follows that {τ(ur):jeΓ} is an approximate identity for both
L\GxG) (in the ZZ-norm) and C*(G x G). Applying Proposition 1.1
we get

f (v) — strict — lim τ(v * nr) — strict — lim τ(uγ * v)

for all i ^ e ^ ( G x G ) . On the other hand it is easy to see that, for
all geL\GxG), •

\\τ(v*ur)*g — i ^ l l i >0 and \\g*τ(uT*v) — g^v0^ >0 ,

where v°e^€(GxG) is the measure defined by v\E) = v(E°) for all
Borel sets E^GxG. Thus, since || ||β ^ ||-||x and L\GxG) is dense
in C*(GxG), we must have f(v) = v°

LEMMA 3.7. The map j : h e L\G) —> h* e L\G) extends to a
^-anti-isomorphism j : A-^ A of period two.

Proof, j : &{G) -> L\G) is clearly a *-anti-isomorphism of period
two. Thus, if we can show that j is an isometry with respect to
the C*-norm, the lemma follows. Let πeΣ(G). We denote έ%fπ

simply by £%f. Let έ%f* be the dual space of ^f and consider the
natural conjugate linear isometry θ: ξ e 3ίf -* (-\ξ)^ e £{f*. Then θ
is surjective and

for all φ, ψ e <§ίf* or, equivalently,

for all ζ,ηe <%f*. We will drop the subscripts £έf\ £ίf* from the
inner products in what follows. Define π: j e G —> θπ^θ'16 &(£ίf*).
It is easy to see that π eΣ(G) and, identifying έ%f with <^**, π — π.
If heL\G) and ξ,ηe£ίf, we haue:

= (π(h)ξ\η)
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so that π(j(h)) = θ~1:π(h*)θ. But then, since θ is an isometry onto,
\\π(j(h))\\ — ll^(^*)||. Since πeΣ(G) was arbitrary and π<->π is a
1-1 correspondence, we get:

c* = sup{||7r(ft*)||: πe.

Hence j is an isometry with respect to || ||c*. Π

LEMMA 3.8. If ve^f(GxG), then (j<g) j)"(y) = v* 6^^(GxG).

Proof. First assume that the lemma is true for v = g e L\GxG)\
then we can apply the argument used in the proofs of Lemmas 3.4
and 3.6 to get the desired result. So it is enough to show
(i (x)iXflr) = g* for all g eL\GxG). But the mapg eL\GxG)->f
is continuous with respect to || ||c* (by Lemma 3.7, changing G by
GxG) and j (g) j is also continuous, so it is enough to show these
maps agree on the || ||c*-dense subset L\G)®L\G). An easy com-
putation shows this is indeed the case. •

THEOREM 3.9. Let G be a locally compact group, A = C*(G),
d: A-* M(A 0 A) as before satisfying (3.5), j: A -* A as in Lemma
3.7. Then {A, d, j} is an involutive cocommutative Hopf-G*-algebra
with coidentity ε, where

(3.10) ε{h) - \h{S)d&

for all heL\G).

Proof. We have already shown that {A, d} is a Hopf-C*-algebra
(Lemma 3.3 and Corollary 3.5). Let heL\G). By Lemma 3.6,

τd(h)(E) = d(h)(E°) - ( (β, δ)h(β)dδ) = \ (3, &)h(S)d» = d(h)(E)

for all Borel sets E ξZGxG. Hence τd — d and {A, d) is cocom-
mutative.

We have already shown (Lemma 3.7) that j is a ^anti-iso-
morphism of period two, so to show that j is an involution for
{A, d) all we have to prove is that (j ® j)"d = τdj. Since {A, d) is
cocommutative, we have to show in fact that (j (x) j)~d = dj. Let
heL\G). By Lemma 3.8,

but, if μe^f(G), then for all Borel sets EQGxG we have
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so we get

(0 (x) J)~d(h) = d(h*) - d(j(h)) .

Hence (j 0 j)~d = dj.
Let ε be the one-dimensional representation of G given by

ε: j e G —> 1 e C. Then ε extends to a ^representation ε: A —> C, i#e.,
ε is a nonzero *-homomorphism. It is clear that ε satisfy (3.10).
If g e&iGxG), one can show easily that (ε (g)/)#, (I (x) ε)# e I/(G)
and, for a.e. j e G,

(ε <g> /)flf(s) = J<7(3, s)dg and (/(x) e)flr(j) -

From this it follows (by the argument used in Lemmas 3.4 and
3.6) that (ε (x) I)"{v\ (/(x) ε)~(v) e ^T((?) for all v e ^(β x (?) and, for
all Borel sets B S G,

(e <g> ! ) » ( £ ) = ( ZB(t)^(e, t) ,

( I ® ε)-(v)(5) = ί XB(β)dv(β, t) .
JGxO

Thus, if A e L'(G) and B Q G is a Borel set,

(ε (x) I)~d(h)(B) = \ (t)h(t)dt) ,

so (ε ® /)"d(λ) = λ = (I®εYd(h) for all A e L^G). Hence (ε (x) /)"d =
/— (I(g)s)~d and ε is a coidentity for {A, d}. •

DEFINITION 3.10. Let G be a locally compact group and let
{A, d, j , ε) be as in Theorem 3.9. We say that {A, d, j , ε} is the
Hopf-C*-algebra associated with G.

LEMMA 3.11. Let G be a locally compact group with associated
Hopf-C*-algebra {A, d, j , ε). If we identify (as in [6]) A* with the
Fourier-Stieltjes algebra B(G) of G, then the multiplication induced
in A* by d (cf. Proposition 2.4) coincide with pointwide multipli-
cation in B(G).

Proof. Let ψU9 ψv e A* be associated wi th u,ve B(G) respec-

tively, i.e.,

(fi,, ψu) = \h(β)u(β)dβ and <Λ, ψv) = [h(β)v(β)d»
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for all heL\G). We have to show that

(3.11) {h, ψγ^> =

for all heL\G). Since u,veB(G), there exist π19 π2 e Σ(G), ξlf ηx e
= SίfKy} ξ2, % e ̂ t = ̂ 2 such that

ft)^ and v(j) =

for all j e G (cf. [6], Definition 2.2]). Define

π: (ΐ,^)6(rxG > πλ{ι) ® ττ2(̂ ) e

Then 7Γ 6 Σ(G x G). Define

u®v:(ic,\))eGxG i > w(s)t;(^) e C .

Then:

where f = fx ® f2,77 = ηx (g) %. Hence ^ (g) v e 5(G x G). Now, if
^ e L\G)®U(G), a simple computation shows that

Since L\G)®L\G) is dense in C*(GxG), we get fu

Hence, by [6; (2.6) Remark 3°], if v

(3.12) <v, ψu<g)ψv> = S u(δ)v(t)dj;(δ, t) .
JGXG

Now, let heL\G). Then d(h)e^€(GxG) so, by (3.12),

Hence (3.11) holds and lemma follows. •

THEOREM 3.12. Let G be a locally compact group with associat-
ed Hopf-C*-algebra {A, d, j , s}. Then G is isomorphic and homeo-
morphic to the intrinsic group of {A, d}.

Proof. By Lemma 3.11, we can identify the commutative Banach
algebras B{G) and A* = (C*(G))*. Then, by [11, Theorem 1], G=
tf(A*)nA**; but the right hand side is just the intrinsic group of
{A, d}, so the theorem follows. •
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REMARK. We could have proved the above theorem directly.
Under the natural inclusion G^(C*(G))*, it is clear that G<^σ(A*) n At*.
However, to show that this inclusion is onto, we would have to
repeat the argument used by Walter (cf. [11, p. 28]). In view of
this we decided to apply Walter's theorem.

As a corollary of Theorem 3.12 and Proposition 2.9, we get:

THEOREM 3.13. If Gx and G2 are two locally compact groups
whose associated Hoph-C*-algebras are isomorphic, then they are
homeomorphic and isomorphic.
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