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^-SIMPLE SETS, SMALL SETS, AND DEGREE CLASSES

MANUEL LERMAN AND ROBERT I. So ARE

A new notion of simplicity for recursively enumerable
(r.e.) sets is introduced, that of (Z-simplicity or simplicity
with respect to arrays of differences of r.e. sets (d.r.e. sets).
This notion arose from the method used to generate au-
tomorphisms of ^*, the lattice of r.e. sets modulo finite
sets, and is a further step toward finding a complete set
of invariants for the automorphism types of £f*. The cZ-
simple sets are closely related to the small sets defined by
Lachlan as a key part of his decision procedure for the
V3-theory of ^*. Finally, the degrees D of ^-simple sets
form a new invariant class of r.e. degrees, since H^D
but D splits Li (where JGΓI and Lx are the high and low r.e.
degrees respectively). This refutes conjectures of Martin
and Shoenfield which imply that degrees C of any class
of r.e. sets invariant under automorphisms of & can be
characterized by a finite set of equalities or inequalities
involving the jump of degrees in C.

O* Introduction. Let έf denote the lattice of r.e. sets under
inclusion. If Jy/ is a sublattice of έf closed under finite differences,
let £/?* denote the quotient lattice of S/7 modulo the ideal &~ of
finite sets. Post's program [11] which has predominated for thirty
years has been to classify an r.e. set A by its lattice of supersets
/P(A) — {W: Wee?' and AQW}. Further evidence for this approach

was the automorphism result by Soare [17] that if A and B are
maximal sets (i.e., S/?*(A) and rS<f*(B) are isomorphic to the two
element Boolean algebra) then A and B are automorphic, i.e., there
exists ΦeAut if (the group of automorphisms of gf) such that
Φ(A) = B.

However, more recent results [9] show that :?'*(A) = ..ζ?*(B)
does not necessarily imply that A is automorphic to B when *S?*(A)
is infinite, even if .,5f*(A) is a very well-behaved lattice such as
the countable atomless Boolean algbera. To characterize the au-
tomorphism type of Ae& new invariants are needed which, unlike
/?*(A), relate the structure of A to that of A. (Warning: all sets

and degrees mentioned will be r.e.)
A second automorphism result [20] demonstrating uniformity

of £?* is that if A is coinfinite and low (i.e., A' = τφ
f) then ^*(A) =

'&*, and in fact the isomorphism is effective on indices. If A and
B are low simple sets are they necessarily automorphic? In order
to extend an automorphism Ψ: ̂ *(A) -> S/̂ *(J?) to an automorphism
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Φ of g7* such that Φ(A) — Φ(B), the automorphism method uses a
certain covering property [17, Theorem 2.2] of which the notion of
d-simplicity, defined below, is a weak version. We prove that there
are low simple sets A and B such that A is d-simple but B is not,
and hence A is not automorphic to B. Thus, cί-simplicity is a new
lattice invariant property of sets l e g 7 not definable in terms of

A class ^ C ^ is invariant if it is invariant under Aut έf.
A class C of degrees is invariant if C — {deg (W): We^} for some
invariant <^ Sΐ g\ A fundamental open question relating the struc-
ture of a set to its degree is to determine which classes of degrees
are invariant. Let R denote the (r.e.) degrees and define

Hn = {a.aeR and a{n) = 0(ίl+1)} .

Ln = {a:aeR and a{n) = 0(M)} ,

where rf(0) = 0, and Ln — R — Ln. The degrees in Jϊi and Lγ are
called high and low respectively. Martin [9] showed that Hλ = M,
the degrees of maximal sets and Lachlan [4] and Shoenfield [16]
proved that L2 = A, the degrees of atomless sets. Given this pro-
gression of invariant classes, L09 Hl9 L2, Shoenfield conjectured that
these exhausted the invariant classes while Martin conjectured that
the invariant classes are precisely L2n and H2n+1 for n ^ 0.

The major achievement of this paper is to prove that />, the
class of degrees of d-simple sets, is a new invariant class not of
the form Hn or Ln for any n. This is accomplished by showing
that £ΓX £ D, but that D splits Lx and in fact that there is a simple
set S with no d-simple set recursive in S. The other known classes
of r.e. sets which contain members of some degree de Lι — LQ (such
as simple or hypersimple sets) can be shown to contain members of
every r.e. degree d > 0 using the permitting method of Yates [22].
Such methods fail here because ώ-simplicity is defined in terms of
certain arrays of differences of r.e. sets (d.r.e. sets) rather than
arrays of r.e. sets.

The plan of the paper is as follows. In § 1 we define d-simpli-
city and prove that hyperhypersimple (M-simple) sets are d-simple
and that d-simple sets are simple. We prove that the class £^ of
d-simple sets is closed upwards under inclusion (among the coinfinite
sets) and that D is closed upwards and Hλ £ />. Finally, we prove
that there are low d-simple sets so D [\LXΦ Φ.

In § 2 we review the small sets introduced by Lachlan [3] in
his decision procedure for the V3-theory of g7*. We prove that no
d-simple set is small, that there is a simple small (and hence not
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d-simple) set in every degree d > 0, and that the d-simple sets do
not coincide with any of the well-known classes of simple sets.
There is a coinfinite r.e. set with no cϊ-simple superset and the class
of degrees of such sets is exactly Hλ.

In § 3 we prove that the eZ-simple sets are not closed under
intersection and that the relation "cί-simple in" is not transitive. In
§ 4 we prove our most important and difficult result that there is a
degree deLt such that all sets of degree <itf are small and hence
not d-simple. Thus D splits Llu

We use the standard notation in Rogers [14]. In addition let
A = *B denote that the symmetric difference of A and B is finite,
and A £ * £ denote that An B = *φ. Let Ba^A denote that A^B
and A — B is infinite. A simultaneous enumeration of a given
recursive sequence {Un}neN is a 1:1 recursive function g with range
{(m, n):me Un}. Thus, at each stage s, g(s) = (m, n) causes one
element m to be enumerated in one set Un. Fixing g let U^ denote
those elements enumerated in Un by the end of stage s, and

those elements appearing in Un before Um. (The notation X\Y
should not be confused with X — Y which denotes I n ? . ) Let
Un\Um = (Un\Um) Π Um, those elements enumerated first in Un and
later in Um.

We identify a set with its characteristic function and letA[#]
denote the restriction of A to arguments <^x. We write {e}i[zl(x) =
y if the eth Turing procedure with argument x and oracle A[z]
halts in ^s steps and yields output y. We assume that e, x, y, z ^
s, that x, y, <Zz, and that if z1 ^ z is used in the computation then
all z2 <ί zx are also used.

l d-simple sets. We begin with a motivation of d-simplicity
from the point of view of generating automorphisms of g7. Sup-
pose that A and B are coinfinite low sets (so ^f(A) = £f(B) by
[20]). Let us try to construct ΦeAutg? such that Φ(A) = B by
enumerating an array {We}eeN such that Φ(We) = We. Now if B is
simple and A is not, say WeΠ A = φ, for We infinite, then we must
fail since We Π B Φ φ for any choice of We infinite. To avoid this
problem suppose that A and B are simple.

Given Wx 2 W2 which intersect A we must choose Wx 2 W2

which intersect B. If we choose W1 and W2 such that (Wx — W2)Π
B Φ φ then we must be sure that A is sufficiently "large" so that
An (Wx — W2) Φφ also, i.e., if B is simple with respect to certain
arrays of d.r.e. sets then A must also be. What is the right defini-
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tion of simplicity with respect to d.r.e. sets? Clearly we cannot
ask that A intersect every infinite d.r.e. set since A is d.r.e. and
infinite.

The definition is motivated by the hypotheses of the Extension
Theorem [17, Theorem 2.2] for generating automorphisms of g%
where the problem of defining X = Φ(X) is split into 2 parts cor-
responding to l ί l l and I n i . First consider XΠ A and choose
a set 7 £ l as small as possible such that YΠ A — XΠ A. Then
consider XΠ A and let X be sufficiently large so that Ϋ

DEFINITION 1.1. (a) A coinfinite set A is d-simple if for all X
there exists Y £ X such that

(1.1) i n A= 7ίll, and
(1.2) (VZ)[(Z - X) infinite => (Z - Y) n A Φ φ].
(b) Furthermore, A is uniformly ώ-simple if an index for Y

can be found uniformly effectively from one for X.
Note that (1.2) asserts that A is simple with respect to the r.e.

array of d.r.e. sets {(We— Y)}eeω- (Of course, ώ-simplicity is definable
in the elementary theory of g7 and hence invariant under Autg7.)

PROPOSITION 1.2. // A is d-simple then A is simple.

Proof. In Definition 1.1 set X = φ. Hence Y=φ and (1.2)
asserts that Z Π A Φ φ for every infinite Z.

PROPOSITION 1.3. If A is hh-simple then A is d-simple.

Proof. Lachlan [2, Theorem 3] has shown that a coinfinite set
A is hh-simple iff £^(A) is a Boolean algebra or equivalently iff for
every X there is a recursive R £Ξ X such that X Π A — R Π A. In
(1.1) set Y=R. Now if Z violates (1.2) then Z-R isinfinite
but {Z — R) Π A — φ, so Z Π R is an infinite r.e. subset of A violat-
ing the simplicity of A.

Notice that Proposition 1.3 does not establish that M-simple
sets are uniformly d-simple since Lachlan's procedure gives us no
uniform way of finding R from X.

PROPOSITION 1.4. Let S$ Q g7 be the class of d-simple sets.
Then £έ? is closed upwards among the coinfinite sets, namely if
AzSί and A £ Bcz^N then Be& also.

Proof. If (1.1) and (1.2) hold for A then they hold a [fortiori
for B since (1.1) for A and B Q A imply (1.1) for B, while (1.2) for
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i a n d A C ΰ imply (1.2) for B.

PROPOSITION 1.5. // (ώ? £ g7 is a class of coin finite sets, and
is closed upwards among the coinfinite sets, and c£p contains all
hh-simple sets then C — {deg (W): We %'} is closed upwards and
C 2 J3Ί.

Proof. Martin [1OJ shows that every deHx contains a maximal
(and hence ΛA-simple) set. Hence Hx Q C. Now suppose a > 6, and
bξHi where b = deg B and Be ώ\ Then by Martin [10] B is not
M-simple so by Lachlan [4, Theorem 1] there exists A 2 B of
degree α. Now A e ^ by upward closure so aeC.

COROLLARY 1.6. Let D = {deg (W): We &}. Then H.Q D and
D is closed upwards.

Proof. By Propositions 1.5., 1.4 and 1.3.

Next we prove that there is a low cί-simple set, and hence
D Π LXΦ φ. The construction is very similar to the usual construc-
tion [18, Theorem 4.1] of a low simple set A except that A must
now intersect certain infinite d.r.e. sets instead of certain infinite
r.e. sets. Let {(Xe, Ze}}eeω be a recursive listing of all pairs of r.e.
sets, and fix a simultaneous enumeration of {Xe, Ze}eeω. To make
A d-simple it suffices to make A infinite and to meet for each e
the positive requirement,

(1.3) Pe: (Ze - Xe) infinite — {lx)($s)[x e (Z* ~ X;) Π (A*ΛΛ - As)\ ,

because we can let Ye = Xe\A. (Recall that U\V = {x: (3s)[xe Us —
V*]}.) Thus Ye satisfies (1.1) because Xe Π A Q X\A, and (1.2) holds
because an element x e Z*e — Xs

e enumerated in A at stage s + 1 is
never later enumerated in Ye so (Ze — Yp) Π A Φ φ.

Each Pe contributes at most one element to A, and the lowness
requirements Ne defined below involve finite restraint, so the usual
construction succeeds. Finally, the uniformity condition (b) of
Definition 1.1 is satisfied by the definition of Ye.

THEOREM 1.7. There is a low uniformly d-simple set A.

Proof. To make A low it suffices [18, p. 523] to meet for each
e the negative requirement,

Ne: {e}f{e) defined for infinitely many s ===> {e}Λ(e) defined.

Let r(e, s) be the greatest integer used in the computation {e}ίβ(β)
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if the latter is defined and ——1 otherwise. Set A0 = <f>.

Stage s + 1. Choose e minimal such that Pe has never received
attention and such that

(1.4) (βx)[x e Z\ - (XI U As) & 2e <x & (Vi ^ e)[r(i, s) < x]] .

Choose x minimal for e. Enumerate x in A and say that Pe receives
attention. (If e fails to exist do nothing.) Let A — \JS As.

The second clause in (1.4) guarantees that A is infinite. Each
requirement Ne is met because each Pίy i < e, contributes at most
one element to A. Thus, lim sups r(i, s) exists for all i and each
requirement Pe is met.

COROLLARY 1.8. D n L, Φ φ.

Our results yield new negative information on the question of
what conditions on A and B guarantee that

(1.5) *.S?(A) ~ £f{B) ==> A is automorphic to B .

Let A be low and d-simple, and B be the low simple set of Corollary
2.7 which by Proposition 2.3 is not d-simple. Now ^?(A)~S>?(B) =
& by [19] but A and B are not automorphic, because d-simplicity
is clearly invariant under Autg7. Hence, (1.5) is false for low
simple sets and the ώ-simplicity of an r.e. set A is not definable as
a property of J5f(A). In [9] it is shown that (1.5) is false for
atomless /^-simple sets. It is unknown whether (1.5) holds when
A and B are both low and d-simple but this seems unlikely. Maxi-
mal sets satisfy (1.5) because they possess a stronger covering pro-
perty than d-simplicity [17, §3]. It is unknown whether this
stronger property is invariant under Aut g" or under what conditions
it is implied by d-simplicity. However, the construction of Theorem
1.7 can easily be modified to produce low simple sets with the
stronger property.

2. Small sets* A second notion which relates the structure of
A to that of A (and is not merely a property of Jtf(A)) is the notion
of a small set introduced by Lachlan [3, Theorem 3] as an important
ingredient in his decision procedure. In this section we prove that
no d-simple set is small, that there is a simple small (and hence
not cί-simple) set in every degree d > 0, and that the cί-simple sets
do not coincide with any other well-known classes of simple sets.

DEFINITION 2.1. (a) If BczACl^N then B is small in A(B(ZΛ)
if for all U and V
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(2.1) V 2 UΓ) (A - B) => (U - A) U V is r.e.

(b) B is small if B C.s A for some A,
The intuition is that B is sufficiently smaller than A so that

any V satisfying the hypothesis of (2.1) must include enough of U
so that the union of the d.r.e. set (17— A) with V is r.e. Notice
that φ Cs A for every A Coo N (because (U - A) U V = U U F), and
for A nonrecursive no B — *A is small in A. (If so set U = N,
and V = A — B implying that A jis r.e.) The terminology "small"
was introduced by M. Stob [21] after he observed,

PROPOSITION 2.2. (Stob). (a) / / A c δ c C C ^ and either
ACZsB or BζZsC then A(Z8C.

(b) / / A Coo C Coo N and A\JC is not r.e., and A is not
recursive, then there exists B such that Ad B c C , Aς£sJ5, and
B(£SC.

Part (a) asserts not only that C s is transitive but also that
small sets are closed downwards under inclusion, while (b) implies
that no notion of A being "close" to C can force all intermediate
sets B to be small in C.

PROPOSITION 2.3. / / B is small then B is not d-simple.

Proof. Let B Cs A. Coo N. Suppose that B is cί-simple. Then
by Definition 1.1 with X = A there must exist YQ X such that

(2.2) Xf)B= YΠB, and

(2.3) (yZ)[(Z - X) infinite = - (Z - Y) n B Φ φ] .

Now in Definition 2.1 set U = N and V = Y. By (2.2), 7 2 Un
(A-B) and hence ( ί 7 - A ) U Γ is r.e. by (2.1). But then Z =
(U - A) U Y violates (2.3) because (Z - Y) = (N - A) is infinite but
fails to intersect B.

M. Stob [21] and, independently, E. Herrmann have shown the
converse to be false by producing a simple set which is neither
small nor d-simple. Essentially the same proof as in Proposition 2.3
establishes the following alternate characterization of d-simple sets
which emphasizes their relationship to small sets.

PROPOSITION 2.4. If AC.^N then A is d-simple if and only
if for all X 2 A there exists Y such that

(2.4) X n A = Yf]A9 and
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(2.5) -π(3TΓ)[(TF- X) infinite and (W - X) U Y is r.e.] .

To show that every degree d > 0 contains a simple small (and
hence not d-simple) set we recall some well-known results.

PROPOSITION 2.5. For any simple set S and degree d > 0 there
is a simple set A £ S of degree d.

Proof. See either [18, Theorem 3.10] or [8, Theorem 3.1].

DEFINITION 2.6. If B Q ^ then B is a major subset of A
(BOmA) if for all W,

WUA=*N = > W U B = *iV .

Lachlan [3, Theorem 3] proved that every nonrecursive r.e. set
A has a major subset B such that B Q A (written BQm A). Notice
that the [requirements of majoricity and smallness tend to conflict
because BCZm A requires B "close" to A while 5 Q A requires B
"far away" from A.

COROLLARY 2.7. For any simple set A and degree d > 0 there
is a small simple set B Q A of degree d.

Proof. Given A simple find Mdsm A by Lachlan [3, Theorem
3] and simple BaM ot degree d by Proposition 2.5. Now B(ZSA
by Proposition 2.2 (a).

(Of course the result for B merely non d-simple and not neces-
sarily small follows by the same proof without Proposition 2.2 and
the notion of smallness using the downward closure of non-ώ-simple
sets of Proposition 1.4.)

Notice that 3> does not coincide with any of the well-known
classes of simple sets such as simple, hypersimple, /zΛ-simple, or
r-maximal, etc. (A coinfinite set A is r-maximal if there is no
recursive set R such that R ΓΊ A and R Π A are both infinite.) Other
classes of simple sets are discussed in [19, §3]. All of these but
the simple !and hypersimple sets exist only in high degrees while
Theorem 1.7 produced a d-simple set which is both low and not
hypersimple [14, p. 138] by the second clause of (1.4). Thus 3f is
contained in the simple sets but in no other of the usual classes.

Furthermore, ϋ^ does not contain any of these classes except
for the hh-simple sets. Proper r-maximal (r-maximal, nonmaximal)
sets may be either d-simple or not. If A is r-maximal and B CSTO A
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then B is also r-maximal but small and hence not d-simple. On the
other hand the usual constructions [5, p. 300] or [12, Theorem 6] of
atomless r-maximal sets can easily be combined with the positive
requirements Pe of Theorem 1.7 to produce an atomless r-maximal
d-simple set. (We say that A is atomless if A has no maximal
superset.)

R.A. Shore and the authors have noted that the Robinson con-
struction [12, Theorem 6] and the Lachlan small major subset
construction [3, Theorem 3] may be combined to produce a "small
tower" {An}neω of simple sets such that

(2.6)

and

(2.7) (V W)[A0 c * W or (3i)[ W £ A,]] .

Condition (2.7) guarantees that AQ is r-maximal and atomless while
(2.6) (together with Proposition 2.2 (a)) guarantees that all coinfinite
supersets of Ao are small and hence not d-simple.

COROLLARY 2.8. (Lerman, Shore, Soare). The set of degrees
containing a coinfinite r.e. set with no d-simple superset is exactly

Proof. For any 6 6 H19 there exists B Cm A of degree b by
Lerman [6]. Now every coinfinite superset C of B is small because
S Q Λ implies A 0 £ * C , so CczA, for some i by (2.7). Thus, by
Proposition 2.2 (a) B has no cί-simple (or even nonsmall) superset.

On the other hand if deg (B) £ Hι then B has a eZ-simple superset
D. By [10, p. 306] there is a recursive array {Wf{n)}neω of disjoint
finite sets with union N and such that | Wf{n) ΓΊ B\ > n for all n.
We build ΰ 2 ΰ to satisfy each positive requirement Pn of Theorem
1.7 (and thus be d-simple) by allowing any x e \Jm^n Wfin) to serve
as the witness for Pn. Since \Jm<n WfLn) is finite, almost every
element x e B may serve as a witness for Pn so Pn is satisfied, yet
at most n members of Wfin) are enumerated in D so Wf{n) Π D Φ φ
and D is infinite.

3* On closure properties of (^simple sets* Many classes of
simple sets such as simple sets, hypersimple sets, and M-simple
sets (although not r-maximal sets) are closed under intersection [14,
pp. 122, 156, 251] and thus together with the cofinite sets form a
filter in g7. This is not true for the cί-simple sets. Indeed we
show that there are d-simple sets C and D such that (C Π -D)CS(CU
D) Coo N, and thus C Π D is not cί-simple. We also show that the
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relation "d-simple in" is not transitive in contrast to the relation
"simple in."

To prepare for these proofs we review Lachlan's strategy [3,
p. 134] for ensuring 5 Q A Fix a recursive listing {(Uif Vi)}ieω

of all pairs of (r.e.) sets, and a simultaneous enumeration of these.
We must meet for each i the negative requirement,

(3.1) N,: V, 2 U, n (A - B) ==> (U< - A) U Vt is r.e.

To accomplish this we attempt to enumerate a set Tt such that if
Vt 2 Ut n (A - B) then

(3.2) Tt £ Ut & Tt 2 Ut - A & (T, - Vt) ΓΊ B = *φ ,

so that Til) Vt = *(17,-A)U Vt and the conclusion of (3.1) is satisfied.
Since B c A we may assume that every element & e B is enume-

rated in A first. To control the enumeration of Tt we have a
movable marker Γέ whose position at the end of stage s, Γ*β9 is the
least xe(Tl — Vi) Π (As — J5S) if x exists, and s otherwise. At
stage s + 1: (1) in defining £ s + 1 all x e (Γf - F/) Π (As+1 - ββ) are
restrained with priority Nt from entering B, and JV* is injured if
some x which it restrains enters B (say because of a positive re-
quirement of higher priority); (2) after As+1 and Bs+1 are defined
then every x e Ui — As+1 such that x <£ Γ is enumerated Γ*. Clearly
Γ* £ Σ7t. Now if F, ^ Γ, ΓΊ (A - 5) then V^U.ΠiA- B) so (3.1)
is automatically satisfied and furthermore lims Γ\ < oo, so Γi is finite
and finitely many x are ever restrained by Nt. If 1^2 TίfΊίA — B)
then lim s/l = °°, so the first two clauses of (3.2) are met and every
element x is restrained by Nt for at most finitely many stages.
Furthermore, if JV, is injured at most finitely often then the third
clause of (3.2) is also met and thus requirement Nt is met.

THEOREM 3.1. The d-simple sets are not closed under intersec-
tion.

Proof, We shall construct d-simple sets C and D such that
(C Π D) C s (C U D) Coo N, whence C Π D is small and hence not d-
simple. Let {{Xe, Ze)}eeω and {(Ue, Ve)}eeω be two listings of all
pairs of (r.e.) sets, and fix a simultaneous enumeration of these. To
make C and D d-simple it suffices to meet the positive requirement
Pe of (1.3) with C in place of A namely,

P°: (Ze - Xe) infinite = > (3aO(3β)[α? e (Zs

e - Xe

s) n (Cs+1 - Cs)] ,

and similarly Pe

D with Z) in place of C. Let A = C U D and B=CnD,
To insure J5 Cs A- we simply meet for each ί requirement Nt of
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(3.1). The priority ranking of requirements is , Ne, Pf, Pe

D,
There are no restrictions on an element x first entering C Ό D but
once there it may not enter C Π D for some positive requirement
until it is unrestrained by all negative requirements of higher
priority.

Stage s = 0. Set C° = D° = φ.

Stage 8 + 1. Given C8 and D* set A8 = C8 U D8 and B8 = C8Γ)D8,
and define T\ as above. Choose the positive requirement of highest
priority which has never received attention and such that

(3.3) (lx)[x e (Z8

e - XI) & 3e < x

& -π (3i ̂  e)[x e (Γ; - F/) Π (As - 5 s)] .

Choose x minimal for e. Now Pe receives attention and we enumerate
x in C if Pe is Pf and in D if Pe is Pe

D. If e fails to exist do
nothing. Let C = \JSC

S and D = Us £>s

LEMMA 1. (C n i?) C 8 (C U D) Coo N.

Proof. Note that (C U D) Coo -ΛΓ by the second clause of (3.3)
and the fact that Pf or Pe

D contributes at most one element to
C U D. Now by the third clause of (3.3) JV* is injured by Pe only
if e < i. Thus, for each i9 Nt is injured only finitely often and T^
satisfies the third clause of (3.2). Now if Vt 2 Ut Π (A - B) then
Ti satisfies (3.2) and JV< is met.

LEMMA 2. C and D are d-simple.

Proof. Fix β. Define I = {i ^ β: lim, Γ{ < co}. Now Γ = U
{2V iel} is finite. If i <; e and i ? / then V, 2 Γ< Π (A - B) so no
a? is restrained by Nt at more than finitely many stages. Thus, for
any x$T there is a stage sx such that for all s ^ sx, x is not re-
strained by any Nif i <> e. Hence, requirements Pf and Pf are met.

Certain notions of simplicity are transitive when considered in
relativized form. For example, if A is simple in B (i.e., AQB and
B — A is infinite and immune) and B is simple in C then A is
simple in C. This is also true when "simple in" is replaced by
"hypersimple in" or "ΛΛ-simple in" but not for "r-maximal in" or
for "d-simple in." For B Coo A the definition of B d-simple in A is
obtained from Definition 1.1 by restricting all the quantifiers X, Y,
Z in Definition 1.1 to be subsets of A.
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THEOREM 3.2. There exist sets S c i Q ^ such that B is d-
simple in A, and A is d-simple but B is not d-simple (indeed

Proof. Combine the construction of the preceding theorem with
the following extra positive requirements Qe which guarantee that
B is d-simple in A,

Qe: (Ze - X.) n A infinite ~ (3x)(3s)[x 6 (Z'e - Xί) Π (# s + 1 - Bs)\ .

Now as in (1.3) we can take Ye — (Xe Π A)\B. The strategy for
meeting Qe is to enumerate in Bs+1 some xe (Zs

e Π A8) — (Xs

e U Bs).
Since Qe contributes at most one element to B and since the nega-
tive requirements Nt permanently restrain only finitely many
elements of A — B from entering B, these requirements Qe can
clearly be combined with all the previous requirements in the proof
of Theorem 3.1 to obtain the extra conclusion.

4* Degrees of d-simple sets* We know by Corollaries 1.6 and
1.8 that all high degrees and some low degrees contain d-simple sets.
It is natural to conjecture that there is a d-simple set in every
nonzero degree since this is true for the other known classes of
simple sets which intersect the low degrees. To our surprise we
discovered that there is a degree d > 0 such that every set of lower
degree is not d-simple (and indeed is small if coinfinite). Thus
^ i C ΰ and D splits Lu and likewise for D replaced by N, the
degrees containing non-small sets. We do not know whether D^Lλ

or whether N — D.

THEOREM 4.1. There exists a simple set S such that every coin-
finite set A recursive in S is small and hence not d-simple.

Proof. We begin with a broad sketch of the proof and then
give the detailed construction. We must make S infinite and meet
for all j , a, and e the requirements,

Pj . Wά Π S Φ φ if Wj is infinite, and

Ra,e' Wa = {e}s and Wa infinite ==> (3xα,e)[ΐ^α CL X*,. C . N] .

Given the hypotheses of Ra>e we attempt kto satisfy its conclusion
as in § 3 by meeting for every i the negative requirement Nt of
(3.1) with B and A replaced by Wa and Xa>e respectively. Namely,
requirement

(4.1) Na,.ti: 7 , 2 ^ 0 (X*,e- Wa) — (^-Xα, e) U V, is r.e.,
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where {(Ui9 Vty}ieω is a recursive list of all pairs of (r.e.) sets as
in §3. We accomplish this as in (3.2) by attempting to enumerate
Ta,eΛ so that if the hypothesis of (4.1) is satisfied then

(4.2) Ta,eΛ £ U< & Γ β f β f i 2 U< - Xa>e & ( Γ β f β l < - V<) ΠW* = * φ ,

so that Ta>eΛ U V< = *(E7, - Xa,e) U V, and the conclusion of (4.1) is
satisfied. Define the recursive functions,

ίmin {z: {e}?βC*](α0 is defined} if z exists ,

( —1 otherwise

l(a, e, s) = max {x: (yy ̂  x)[WaM = {e}f•(»)]} .

The main obstacle in achieving Wa C* X*t* Coo -N" is that unlike
Theorem 3.1 where we controlled B, here Wa is being enumerated
by the "opponent" [4] and so after we enumerate an element xe
Ta>eyi, the opponent may enumerate x in Wa before x appears in Vt

thereby jeopardizing the final clause of (4.2). To overcome this
obstacle and meet requirement Ra,e in case Wa = {e}s and Wa is
infinite we wait for some x < l(a, e, s), such that 'x£ Wa U Xi,9 and
we assign a certain marker Aa>e,n to x with the intention that the
final positions {-4? βfΛ}ne» of the markers will constitute Xa>e thereby
ensuring Xa,e Cl™ N. Now if the opponent enumerates x in Wa, say
at stage t + 1 > s, while St[u] — Ss[u], where u = u(e, x, s) then

(4.3) Wl+\x) = 1 and {e}f*(x) = 0 .

We then preserve St[u] with priority Ra>e thereby preserving (4.3)
and ensuring that Wa Φ {e}s. This negative restraint for Rate can
be injured only by a positive requirement P3 such that j < (a, e).
(Let ΛB

at9t% denote the position of marker Λa>e>n at the end of stage
s.) Hence, for almost every x = Λs

a>e>n we can safely assume that x
will remain in Wa until we enumerate in S some y <: u(e, x, s).

Corresponding to each negative requirement Nateti we have a
"gate" Ga>e>i as in Lerman's pinball machine model [6]. The gates
are arranged in ascending order according to index so C?β,β>< lies
below Ga',β',i> just if <α, ef i) < (a', e\ i'}.

Now suppose that requirement Pό wishes at stage 8 + 1 to
enumerate some element y into S. We first consider all x such that
y :g u(ef xf s), since such x may enter Wa when we put y into S.
If some such x = Λs

a>e>n for some <α, e, n} ^ j, then we do nothing
since Ps does not have enough priority to move marker Λa>e>n. If
there is no such <α, e, n) (and a few other conditions below are
satisfied), then we appoint y as a follower of Pύ and we attempt to
let y pass through all gates of higher priority than Pd, namely
gates G<β,βί<>, <α, e, i> ̂  i .
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If the follower y eventually reaches gate Ga>e>i at some stage
ί + l ^ s + 1 we enumerate in Xaje all elements xeE{a, e, i, y, j),
which is a certain set defined at stage t + 1 and consisting of most
elements x e T^U — Wl but excluding {A\ e ,t: (a, e, n) <; j}. Follower
y i s l a t e r r e l e a s e d b y G a i e > i a t s o m e s t a g e v + l ^ t + l i ί E ( a , e, i ,
y, j) £ Vi, whereupon y passes to the next lower gate. The point
is that no xeE(a, e, i, y, j) can violate the last clause of (4.2) if y
is later enumerated in S because x e Vt already.

Now follower y is eventually either released by all gates and
enters S at some stage w ̂  v + 1, or y is cancelled, or y is a
permanent resident of some gate Ga,e>i. In the latter case Vt Jϊ
Ta>e,i Π (Xa,e — Wa)f Ta,eΛ is finite and so there are finitely many
permanent residents of GayeΛ.

To see that this strategy succeeds in meeting Na>eti we need to
know that no new x g E(a, e, i, y, j) is enumerated in Ta,eti between
stages v + 1 and w. This requires not just a single set Ta>e>i but
an infinite list of candidates {Ta,βti,p}peω, such that TamββUp will be the
true Tattt,i satisfying (4.2) just if p is the canonical index of the
finite set of permanent residents at gates Ga>>ef>iΊ <α', e', ί')^<α, e, i>.
(As in Rogers [13, p. 70] let Όv denote the finite set whose canonical
index is p.)

If y and y' are followers of Pό and Pά, respectively we say that
yf has lower order than y if j < j ' or if j = j ' and yf was appointed
after y was appointed. If y and yf are followers at stage s we
shall arrange that y < yr iff yr has lower order than y. A follower
y of P^ once cancelled can later be appointed to follow Pjf only if
f < 3

CONSTRUCTION.

Stage s = 0. Do nothing. Set Z° = φ for all sets Z, M° = - 1
for all movable markers M, and r(α, e, 0) = — 1 for all a and e.

Stage s + 1. Perform in order the following steps.

Step 1. For all <α, β> ̂  s, if either r(α, β, «) = — 1 or there is
a y e Ss — S8'1 such that 2/ < r(α, e, s), set r'(α, β, s) = — 1. Other-
wise, set r'(α, β, s) = r(a, e, s) (whether or not <α, e) ̂  s). If r'(a, e,
s) = — 1, and there exists # 6 TFα

8 such that {e}fs(cc) = 0, choose x
minimal for a and e and set r(a, e, s + 1) = î (β, α;, s). Otherwise, set
r(a, e, s + 1) = r'(α, e, s). If r(α, β, s + 1) Φ r\a, e, s + 1) = — 1, then
cancel every follower of every requirement Pjf j ^ <α, β>.

2. If r(α, e, s + 1) > - 1 or <α, e) > s, let Z4+1 = φ and
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Λ8

a,e,n = - 1 for all n. If r(a, e, s + 1) = - 1 let Λs

a+e\n be the nth

element of the set

LZ1 = {x: x e W: U Xα

β,e & α; < ί(α, e, s)}

if such element exists and Λs

a

+l% = — 1 otherwise. Define

8 + 1) = {x: x = Λi+' & <α, β, ^> ^ j] .

If either F(i , s + 1) =£ i^(i, s) or ^(β, OJ, S) Φ u(e, x, s — 1) for some
a? e Ut^s+i ^ 0 , *) then cancel every follower of Pj9 for all j r ^ i .

3. If follower y of requirement Pd is at gate Ga,βli and
w(β, cc, s) Φ u(β, x9 s — 1) for some α? 6 E(a, e, i, y, j) then cancel all
followers z ^ y.

Step 4. Define

{{μx)[x 6 (Xα% - TFα

s) n (T:,e t - F/)] if x exists,
ps+1 # = =

(s otherwise.

Define

H(a, e, i, s + 1) = {#: t/ is a follower now at a gate Ga>,9',i> for

some <(α', e', ΐ ' ) ^ (α, e, ΐ)} .
Choose p such that Dp = iϊ(α, e, i, s + 1). Let

Enumerate x in Tay€yi)P. If a? is not defined do nothing. Let Ts
a%\i —

U φs + l
p J- a,e,i,p

Step 5. Requirement P3 requires attention if W3 ,8 Γi S8 = φ, and
one of the following two conditions holds.

Condition 1. A follower y of P5 now at some gate Ga>e>i is
released by Gβ>β,, namely

Condition 2. All existing followers of Py currently reside at
gates, and there exists y e W] such that y > 2j, y > all previously
appointed followers of requirements PάΊ j' ^ i, and

(4.4) (Vx)[x e U F(j,t) ==> u(e, x, s) < y]9

and
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(4.5) (Vα)(Vβ)[<α, e) £ j = = * r(a, e, s + 1 ) < y] .

If no Pj requires attention go to step 6. Otherwise, choose the
least j such that Ps requires attention and the least y correspond-
ing to Ps. Cancel all followers z of lower order than y, and adopt
the first case below which holds.

Case 1. Condition 1 holds. If <α, e9 i) = 0 enumerate y in S.
Otherwise move y to gate ffβ»ιβ»tl», the next gate below Gatβtt. Let
C be the set of all x such that x e E(a', e\ i\ y\ j') for some follower
y' < y now residing at gate Ga',β',i'

 a n ( l following some P5.. Define

E(a', e\ ϊ, y, j) - {x: xeT:ftti. - U F(jf *)}
ίSβ + l

— {x: x 6 C & u(e', x, s) < y} .

Enumerate in Xa>,<> all xeE(a', e', ί', y, j).

Case 2. Condition 2 holds. Appoint y to follow Ps. Place j/
at gate Ga>t9'ti', where j = <α', e', ΐ'>, and proceed as in Case 1.

Step 6. If a? e W: - Wl~γ enumerate x in Xatβ.

This completes the construction at stage s + 1. Define Z = \JSZ
S

for each set Z mentioned above.

LEMMA 1. For all e and x, u{e, x) = lims u(e, x, s) exists, and S

is low (i.e., S' ^ΞTΦ')-

Proof. This follows automatically from the restraint function
r as in [18, Theorem 4.1 and Remark 4.5]. Fix e and x. Uniformly
effectively in e and x we can choose a such that Wa = {0} and b
such that for every σ e ω<0>, {&K(0) = 0 iff {e}σ

8(x) is defined. Some
y<r(a, 6, s) can be put into S at stage s + 1 by Pj only if j<(a, δ>,
but each P3 contributes at most one such element to S9 so lims r(α,
6, s) exists. Now if {e}fs(x) is defined for infinitely many s, then
{&}f*(0) = 0 for infinitely many s and hence for cofinitely many s by
step 1 and the definition of r. Thus, lims r(α, 6, s) > —1 and {e}s(x)
is defined. Hence, u(e, x) = lims %(e, x, s) exists and is recursive in
φf by the Limit Lemma [15, p. 29]. Finally, S is low since e e S '
iff u(e, e) > — 1 .

LEMMA 2. For eαcfr gate Gatβti there are at most finitely many
followers y which reside permanently at Ga)e>i.

Proof. Suppose follower y of Pά resides at Ga>eΛ at all stages
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^s 0 . Then E(a, e, i, y, j) g V< U Wa so (Xat9 - Wa) n Γβ,βli-g-.yo and
hence Γβfβf< is finite because of step 4. Choose 81 ̂ > s0 such that
T8

a,ei-= Tatβti and w(e, a?, «) = w(e, a?) for all xe Tatβti and β Ξ> s^ Let
^ = max {%(β, a?): a? e Ta,βii}.

Now suppose for a contradiction that Ga,eΛ has infinitely many
permanent residents. For each m > 1 let ym > ^ be a permanent
resident of Gβlβ>< which follows some P i m and arrives at £«,,,< at
some stage sm + 1 > Si + 1. Let Cm be defined for τ/m as in Case 1
of step 5 (with α, e, i in place of α', e\ ir). Now since ym is a
permanent resident of Ga,ettf E(af e, i, ym, jm) Φ φ, and so must contain
an element vm e Tatβti — Cm. But the definition of Cm implies that

Vmί φ vm2 for m1 Φ m2, so there can be finitely many such elements
ym because Ta>e}i is finite.

LEMMA 3. S is simple.

Proof. First S is infinite since by step 5 Case 2 if y is appointed
to follow Pj then y > 2j. I t remains to show that for all j require-
ment Pά is met. Fix j and assume that for all j ' < j , Pά, is met
and receives attention at most finitely often. Choose s0 such that
no Py9 j ' < j , requires attention after stage s0. Now we can choose
sλ > s0 such that r(a, e, s) — r(a, e, βx) for all s *> ̂  and all (a, e)^j9

because Pά> can contribute to S an element y ^ r(a, e, s) only if
f < <a, e).

Next we choose s2 > βj. such that F(j, s2) = F(j, s) for all s ^ s2.
To see that this is possible fix (a, e, n) ^ j and assume that for
all nr < n, marker Λate>n, does not move after stage /y>s1. Suppose
Λsa,e,n = x > — 1 for some s > v, where x is minimal for all s > v.
Then r(α, e, ί) = — 1 for all t ^ s^ Hence, by the choice of s0 and
cancellation of step 2 and (4.4), u(ef x, t) = u(e, x, s) for all t^s,
and {β}f*(a?) = 0 for all t ^ s. Now a? cannot be enumerated in Wa

after stage s else step 1 later applies to <α, e) contrary to the
choice of slβ But & cannot be enumerated in J O i β at a stage t + l>s
else step 5 applies to some Py, j

f < <α, e, w>, contrary to choice of
s0. Thus, Λlte,n = x for all t^zs, and s2 exists. Set F(j) = \JS F(j, s) =

Choose s3 ̂  s2 such that u(e, x) = tt(β, x, s) for all s ^ s3, e ̂  j ,
and xeF(j). Now after stage s3 the cancellation of steps 1 and 2
cannot apply to Pό. By Lemma 2 there can be at most finitely
many permanent residents yl9 , ym at gates Gatβtif <α, e, ϊ) ^ j .
Choose z1 > u(e, x) for every xe Ό{E(a, e, i, yky j k : 1 ̂  k ̂  m)}, where
2/fc permanently follows P i f c. Choose s^s3 such that ^(β, x, s)=u(e, x)
for all s ;> s4 and x ^ z19 and such that each #&, fc ̂  m, has reached
its final gate position by stage s4.
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Now suppose that W5 is infinite and Wj f] S = φ. Choose a
stage s5 + 1 > s4 -f 1 at which some follower y of Pά is appointed
and such that no follower y' < y ever receives attention after stage
s5 + 1. Now y cannot be cancelled at step 3 or step 5 by choice of
s4 and sδ respectively. Note that when y reaches gate Ga,eΛ, all
residents of Gat0ti must be permanent. Hence, y can never be can-
celled. But y is not a permanent resident of any gate 6rα>e>i, <α, e, i><Ξ
j so y eventually enters S. Hence, requirement Pό is met and
receives attention at most finitely often.

LEMMA 4. For all a and e requirement Ra>e is met.

Proof. Assume Wa — {e}s and Wa is infinite. Hence, by the
proof of Lemma 3, for all a, e, and n, ΛZ,e,n = lim, Λ8

a,e>n exists and
Λte,n > - 1 . Hence, Xa,eCooN, and WadXa>e by step 6. To prove
Wa Cβ -Xα. we must verify that requirement JVα,β,< is met for all i.

Fix <α, e, i>. Now assume the hypothesis of (4.1), namely Vtz>
Ui n (Xa,e- Wa). Then V< 3 Ta,e>i Π (Xa,e- Wa), and hence lim, Γ;,.f< =
oo. By Lemma 2 choose p such that

Dp = {y: y is a permanent resident of some gate

Gv..'.*', « e', i'} < <α, e, i}} .

We shall show that Ta,e,itP satisfies (4.2).
We call stage s + l a nondeficiency stage of the construction if

some requirement Pό receives attention or is cancelled at stage s + 1
and for all j ' <; j no follower y of P5> receives attention or is can-
celled at any stage t > s + 1. Note that there are infinitely many
nondeficiency stages, and at all sufficiently large nondeficiency stages
s, H(a, e, i, s) = Dp because whenever a follower is cancelled, all
followers of lower order are cancelled, so any follower existing at
stage s remains in existence and in its current position at all later
stages. Therefore, each x e Ui — Xa,e will be eventually enumerated
in Ta,,ti,p at step 4 of some nondeficiency stage.

Thus, Tβ,βfl,p satisfies the first two clauses of (4.2). To see that
it satisfies the final clause also, choose s0 such that all followers
yeDp are in their final gate positions by stage s0, no requirement
Pβy J<(a<, e> i), receives attention at any stage s^s0, and r(α, β, s) =
— 1 for all s ^ s0.

Now suppose x e T*%ι,iyV — T8

a>eΛ>p for some s > s0. Then x e L**1

and {e}? (αθ = 0. Now if x e Wϊ+1 - Wl for some t + 1 > s + 1 then
y e Sv+1 — Sv for some y ^ u = u(e, x, v), and v such that s <ί v :g t
else St[u] = S8[^], {e}f'(») = 0» and step 1 applies to <α, e> after stage
t contrary to the choice of β0. Let y be the first such follower so
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that v is minimal. Then u(e, x, s) = u(e, x, v). Suppose y follows
Pά. Then j > <α, e, i) by choice of s0. Now y cannot have been at
a gate Gvf#/f</ for <α', e\ i') <; <α, e, i) at stage s + 1 because y&Dp.
Therefore, y enters Ga,eΛ at some stage ax + 1, such that s <; 8X <̂  v.

By step 5 Case 1 x is put into E(a, e, i, y, j) at stage sx + 1 unless
either: (1) x e U {.F(i, &): fc ̂  sx + 1}; or (2) u(e, x, sλ) < y and x e
^(α, e, i, y', jf) for some follower y' <y which rests at Ga,e>i at stage
βi + 1 and follows some Pr. But (1) cannot hold else u(e, x, sλ) < y
and hence u(e, x, v) < y by (4.4) and because otherwise y is cancelled
before stage v + 1 according to step 2. (Notice that (4.4) also rules
out y being appointed too late.) Likewise, (2) cannot hold else
u(e, x, Sj) < y and hence u(e, x, v) < y since otherwise y is cancelled
before stage v + 1 according to step 3.

Therefore x e E(a, e, i, y, j) and x must have been released by
Ga,e,i at some stage s2 + 1 such that sλ <̂  s2 <* v at which time x e
Vϊ . Therefore (Ta,e,itP - F<) Π i = V and Ta,βtilP satisfies (4.2) so
requirement Nat0ti is met.

5 Final remarks and open questions* In view of the close
resemblance between non-d-simple sets and small sets we would like
to know whether every non-ώ-simple set is small. The obvious
attack that A non-ώ-simple via X implies A C X fails. If these
classes fail to coincide (as seems likely) is it at least true that D=
N, the degrees containing non-small sets? The construction and
proof in Theorem 4.1 strongly used the fact that S is low. Can
this be extended to non-low degrees? In particular, is it true that
D Z) Zj? Is there any elegant description of D analogous to the
definitions of Ln and HJ

A major open question is to find all the invariant classes of
degrees and in particular to determine whether Hn and Ln are
invariant for every n. In particular, is Lλ invariant? If so one
should be able to find a condition analogous to "atomless" and carry
out the procedure of Lachlan [4] and Shoenfield [16]. After repeated
attempts no such condition has emerged. If Zx is not invariant
then one ought to be able to prove using automorphisms that for
any invariant class C if Z2 gi C then C Π Lx Φ φ. To do this one
would hope to show that for any coinfinite set A such that deg (A) e
L2 there exists Φ e Aut g7 such that deg (Φ(A)) e L^ However, by
[20] this would imply that J*f(A) = & for every such A and we
have been unable to push Lachlan's construction [2, Theorem 4] to
verify this. We do not even know whether for such an A and for
any 3V3-Boolean algebra & [2, p. 21] there exists B 2 A such that
^f*(B) = &. This has been verified however [1, Theorem 4.8] for
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coinfinite A satisfying a lowness property similar to deg (A) β L2.
Finally, we are interested in the role of cZ-simplicity and its

stronger versions in classifying the automorphism types of members
of g\ If A and B are cZ-simple and low is A automorphic to BΊ
What are sufficient conditions on A and B for (1.5) to hold? Which
other definable classes <g* £ if besides maximal sets and infinite,
coinfinite sets constitute orbits under Aut §f ?
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