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A selection theorem is proved which unifies and gene-
ralizes some known results.

1. Introduction. The purpose of this note is to prove the follow-
ing theorem, which unifies and generalizes previously known results.

THEOREM 1.1. Let X be paracompact, ¥ a Banach space, Z < X
with dimy; Z £ 0, and ¢: X — F (Y) ls.c. with ¢(x) convex for all
xe€X — Z. Then ¢ admits a selection.

Recall that a map ¢: X — # (Y), where .# (Y) denotes {SCY:
S # @, S closed in Y}, is lower semi-continuous, or ls.c., if {re X:
#(x) NV =« @}is open in X for every open Vin Y. A selection for
a map ¢: X — Z (Y) is a continuous f: X — Y such that f(x) ¢ ¢(x)
for all xeX. PFinally, if Zc X then dimyZ <0 means that
dim E £ 0 for every set EC Z which is closed in X (where dim F
denotes the covering dimension of E)'.

Theorem 1.1 incorporates several known results: The case
Z = @ is [1, Theorem 1], the case Z = X implies [1, Theorem 2],
and the case where Z is open in X and ¢(x) is a singleton for
all xe X — Z implies [3, Theorem 1.2}

The conclusion of Theorem 1.1 can be strengthened to assert
that, if A C X is closed, then every selection g for ¢|A extends to
a selection f for ¢: In fact, if we define ¢, X — F (Y) by ¢,(x) =
o(x) for x¢ A and ¢,(x) = {g(x)} for xc A, then ¢, is ls.c. by [2,
Example 1.3], so ¢, has a selection f by Theorem 1.1, and this f is
a selection for ¢ which extends g.

2. Proof of Theorem 1.1. As in the proofs of the special
cases of Theorem 1.1 which were obtained in [1], it will suffice to
show that for each & > 0 there exists a continuous f: X — Y such
that f(x) € B.(¢(x))* for all x€ X. Once that is done, one can obtain
the required selection for ¢ as the limit of a uniformly Cauchy
sequence of continuous functions f,: X — Y such that f,(x) € B,,..(¢(x))
for all z e X.

* Observe that, for normal X, dimy Z < 0 is valid if either dimZ = 0 or dim X = 0.
2 In the latter two cases, Theorem 1.1 is valid if Y is any complete metric space,

since such a space is always homeomorphic to a closed subset of a Banach space.
8 B.(S) denotes the open e-neighborhood of S.
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So let ¢ > 0 be given. For each y € Y, let U,={x € X: y € B.(¢(x))}.
Then {U,:y€ Y} is an open cover of X because ¢ is l.s.c., so there
exists a locally finite, open cover {V,:ye Y} of X with V,cU, for
all ye Y. For each z¢ X, let F, = {ye Y:xec V,}; then F, is finite,
and F,C B.(¢(x)). Let S= X — Z, and for each s€ S define

G, = {xe X: conv F,C B.(¢(x))} — U{V,:ye F,}.

Then s € G, because B.(¢(s)) is convex, and G, is open in X because
¢ is lLs.c. and conv F, is compact (see [3, Lemma 11.3]). For later
use, let us also note that F,cC F, for all xeG,.

Let G = U{G,:s€8}, and let E =X — G. Then E is closed in
X and EcCZ, so dimE <0. Hence the relatively open cover
{(V,NE:yeY} of E has a relatively open, disjoint refinement
{D,;ye Y}.

Let W, = V,Nn(D,UG). The {W,:ye Y}is alocally finite, open
cover of X, and thus has a partition of unity {p,: ¥ € Y} subordinat-
ed to it. Define

fl@) = g‘{ (Dy(2))Y -
Clearly f is continuous, so we need only check that f(x)e B.(¢(x))
for all ze X.

If xe E, the f(x) = y € B(¢(x)) for the unique y€ Y such that
x€D,. So suppose that xcG. Then xe G, for some s€S, so

f(®) econv F, C conv F, C B.(¢(x)) .
That completes the proof.

REMARK. The above proof implies that X need only be assumed
normal and countably paracompact if Y is separable, and that X need
only be normal if U,.x ¢(x) is contained in a compact subset of Y.
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