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A MAXIMUM PRINCIPLE ON CLIFFORD TORUS AND
NON-EXISTENCE OF PROPER HOLOMORPHIC
MAP FROM THE BALL TO POLYDISC

B. WonG

A maximum principle which estimates the gradients on
the clifford torus of plurisubharmonic functions defined in
the polydisc is derived. With this result we give a new
proof that there exists no proper holomorphic map from
the ball to polydisc in C°.

1. Introduction. Itisan old theorem of H. Poincaré that the
bidise 4, = {(z, 2.): |2.| < 1, |%,]| < 1} and the ball B, = {(z, z,): |2, > +
|%,1> < 1} are holomorphically distinet. Around 1935, V. Rothstein
proved the remarkable fact that there exists no proper holomorphic
map from 4, to B, ([6]). Much later, G. H. Henkin generalised this
result of Poincaré to the care of analytic polyhedron and strictly
pseudo-convex domain ([3]). His proof was based on the comparison
of Carathéodory metrics on these two different domains. He also
indicated that it is possible to yield a generalization of Rothstein’s
theorem to polyhedron and strictly pseudo-convex domain by using
the techniques employed in his paper (i.e. there exists no proper
holomorphic map from polyhedron to strictly pseudo-convex domain).
But his method can only be applied to the case of proper holomor-
phic map from polyhedron to strictly pseudo-convex domain. Despite
all these old and new developments, a proof the following statement
is unknown to the author.

“There exists no proper holomorphic map from B, to 4,”.

The proofs of Poincaré and Rothstein are rather easy; they used
the groups of biholomorphisms, Carathéodory metrics as well as the
continuity principle to gain contradiction. In order to obtain a proof
of the above statement a deeper investigation is in demand. In this
paper we give a proof of this fact along the line of the theory of
intrinsic measures (Carathéodory measures, Eisenman-Kobayashi
measures) ([4], [5], [7]). The proof involves a boundary estimate
of Hisenman-Kobayashi measure in 4, — W, where W is a complex
analytic variety.

For simplicity of notations we shall restrict all our statements
in C?, but our proof can equally be applied to C* without difficulty.
One can also generalize our result to strictly pseudo-convex domain
by passing through a localization process. It is also important to
point out that, throughout this paper, the intrinsic measures are
defined with respect to polydise ([5]). They are different, in an
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essential way, from those measures defined with respect to the ball
(7). For the basic theory of intrinsic measures one should consult
[4] and [5]. They will be used frequently in the sequel of this
paper.

After the completion of our work we were informed by professors
Yum-Tong Siu and Karl Stein that our result had already been
proved by H. Rischel (Math. Scand. 15 (1964), 49-63). Our proof is
entirely different from his, and the method of invariant measures
can be used to prove further interesting results on proper holomor-
phic maps between strongly pseudo-convex domains in C*. Although
there are difficulties for us to understand the proof due to Rischel,
it should be stressed that his paper has been available for fifteen
years and our proof was obtained independently.

1. Maximum principle on clifford torus. The distinguished
boundary of 4,, namely

T={(z, %)||2,] =1 and |z,| =1},
can be regarded as a regularly embedded torus in
S? = {(z,, 2)||2,] + |2.]" =2},

which is a three dimensional sphere. In the terms of classical dif-
ferential geometry, 7T is ecalled a clifford torus. The clifford torus
plays an important role in the complex function theory of polydisc.
On the other hand, it is an interesting submanifold of S® from a
geometric viewpoint.

Let z be a point of T S°. We shall use the following notations
throughout;

(1) mn, is the line pointing from the origin of S*® to z (i.e.,
radial direction).

(2) If zemn, (xeT) we denote by d(z, T) the euclidean distance
from 2z to T.

(8) N.={zed)zen,tecT d(z T)<e}, were ¢ is a sufficiently
small positive number.

We are going to derive the following maximum principle in this
paragraph.

THEOREM 1.1. Let U be a funciton im 4, which is continuous
up to the boundary of 4,. We assume that

(1) U=0o0on o4, and U <0 in 4,

(2) U is plurisubharmonic in 4,.

Then there exists a small ¢ > 0 and a positive constant C such
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that for all ze N.,, — U(2)/d(z, T) = C > 0.

Proof. Let us write
g(z) — e-—arz — g2 ,

where z = (2, 2,) €C*, a is a constant to be determined, » = |z] =
Vg + (2]

A direct computation would show that ¢ satisfies the following
conditions

(1) vzed, giz) >0

(2) VvzeT, g =0

(3) There exists a positive constant K such that dg/dn.(t) =
—2V 20 ¢ < —k for all teT.

Let », be a positive number which is slightly less that 1/ 2.
Then 0B;: = {(z, 25)||2:> + |2, = 7]}. We also denote by D, the
region between 9B;? and 6B;* and D=D,N4, Let A=Dn
(User #,), Where 7, = {Ax|\ is a complex number |\ <1, xe T}.

The following is a result subject to only straightforward com-
putation.

(4) If o is a sufficiently large positive constant, then vze A4,
Ag(z) > 0, where 4 is the Laplacian operator on #, which contains z
with z e T.

Now we can proceed with our proof.

Let V=U-+ s-g, where s is a positive constant such that
V(2)<0 for all z belonging to 0ANaéB;:. It should be noticed that the
sets T and 0A N 0B constitute the boundary of A constructed above.

Claim. If we regard V as a function defined on A, then it is
impossible for V to attain its maximum in the interior of A.

Suppose w € A such that V(w) is the maximum. Let %, be the
complex disc as above which contains w (where x € T). However,
U is plurisubharmonic in 4, (therefore subharmonic on %,) and ¢ is
subharmonic on 7%,., one can easily see that V= U + s-¢g is then
subharmonic on #,. Thus one obtains a contradiction to the assump-
tion that V attains a maximum at w. Furthermore V(z) <0 for all
2€0A N 0B, hence it is led to the conclusion that V attains its
maximum on 7T; here we have used the fact that ¢ =0, U= 0 on
T and that both g and U are continuous up to the boundary.

By the compactness of T and the fact that the vector field =,
on 7T is smooth we can choose a sufficiently small ¢ > 0 such that

Uu@) — Uz) dg
d(z, 0T +s dn, an, D=0

for all teT, z€ N..
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Since U(t) = 0Vt e T, together with condition (3) we obtain

U@ - _ .99 - k>
daT = T =R

for all te T, ze N..
Letting C = s- K we complete the proof.

2. A theorem on the proper holomorphic map from B, to
4,. Suppose f: B, — 4, is a proper holomorphic map. By a theorem
of Remmert (B,, f, 4,) is a complex analytic branched covering. The
branching locus is given by s = {z € B,|det (df(z)) = 0} and f: B, — s —
4, — f(s) is a unramified finite complex analytic covering.

We define a complex analytic function L: 4, — f(s) — C as follows,

L(z) = ﬁ det (df(z)), where zed, — f(s),

F7(@) = {e, %, +--, x,}, df(x;) = Jacobian of f at x,.. We make an
observation here that L is locally bounded around the complex sub-
variety f(s) < 4,, hence L extends holomorphically across f(s). The
following theorem will be proved in this section.

THEOREM 2.1. L 18 a bounded holomorphic function in A4,.

Proof. Let » be a positive number slightly less than 1. It is
well-known fact that L|4; assumes its maximum on the distinguished
boundary

T(4) = {(2y 2)||2:] = 7, [2]| = 7}

of 4;.

With some considerations it suffies to prove that VvzeN,,
|det (df(x))] < Q, where xze{f*(x)}, @ is a constant and ¢ is a suf-
ficiently small positive number.

The following notations will be used in the rest of this paper:
E;, = Eisenman-Kobayashi measure on B,

E;’7 = Eisenman-Kobayashi measure on BT = {(z, z)||2.* + |2,]* < 2}
E,, = Eisenman-Kobayashi measure on 4,

(For the definition of Eisenman-Kobayashi measure, consult [4]). The
following fact are immediate

(a) Since f: B,— 4, B;® is holomorphic map, by the measure-
decreasing property we have

| Epy(@)| Z |det (df(@)| - | E)2(2)]

where
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re{f\(2)}, zed,cB'%.

(b) From the explicit formulas of K, and E;’Z, we have

C, C,
—t < | Ky s -—22
((y, BYy® ~ = Bl = ((y, 0B,))*

K, - K,
@, oB7Ty = [ En ) = G Emy

where y € B,, we B;?, sufficiently close to the boundary, C, C, K,
and K, are constants.

(¢) From the explicit formulas of Kobayashi metrics in B, and
4,, and also the distance-decreasing property, we have

d(z; adz) =1 d(x, aBz) ’

where x € {f(2)} for all z € 4, sufficiently close to d4,, | is a positive
constant.

With the above facts in mind we can prove the following con-
sequences.

(1) (%) (422B) 2 et asta)

with ze{f™*(2)}, z€ N,, ¢ is a sufficiently small number.
(2) Suppose that U: 4, — R is defined as follows;

U(Z) = max {—'d(xly 632): —d(x2, aB2); Tt
_d(xm’ aBZ),f—l(z) = {xli Loy ** %y xm}, z 642} .

Obviously U is a bounded plurisubharmonic function on 4, —
{w| L(w) = 0}, it extends across {w|L(w) = 0} by a well-known lemma
of Grauert. By (c¢) it is easy to see that U is continuous up to the
boundary of 4,.

Finally we apply Theorem 1.1 to U defined above. We there-
fore obtain

- d(z, 0B;?)

C 3w, 9B (C is the constant in Theorem 1.1),

where z € {f'(z)}, 2€ N, for a well-chosen small positive constant &
(Note: if ze N.,, d(z, 0B, %) = d(z, T).)
Combining all above inequalities, we have

(%)(%) = |det (f(z))] -

1

The proof is thereby completed.
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3. Boundary behavior of the complex analytic variety
{#ze 4,| L(z) = 0} in 4,. Let P be a point belonging to d4,, We denote
by I'? the cone extending & with vertex at P in 4, (ie., I'% =
{z]z = (x, ¥), 24, tan™ (y/x) < 6, 0 < 6 < 7/2}), where we choose P
to be the origin of our coordinates, x — axis = normal of 44, at P,
y — axis = tangent of 04, at P. Furthermore, P 4, X 4,— 4,
P,: 4, X 4, — 4, are first and second projections in a natural way.

LEMMA 3.1. With the same notations as before, there exists a
point Pe T(4,) such that it 18 mot an accumulation point of
{z| L(z) = 0} N 4% for all 0 < 0 < /2, where A} = 't X I't C 4,.

Proof. By Theorem 2.1. L is a bounded holomorphic function,
the radial limits L* of L approaching T(4,) exist almost everywhere.
It is well-known fact that L = P[L*] (see our remark below), where
P is the poisson kernel of 4, (for instance, see Rudin: Function
theory in polydises P. 81 exercise). Furthermore one can model
from the proof of Fatou theorem to give the following assertion:
For almost every point y € T(4,), the non-tangential limit

lim L(x)

z—»yo
ZE“II

exists, i.e.,
L*(y) = lim L(x)

Ly
]

for ye T(4,) a.e. However, if every point y e T(4,) is an accumula-
tion of

(2| L(z) = 0} N A%  for some 0 <4 <-’2£,

it would imply immediately that L*(y) =0 a.e., hence L =0 by
poisson formula. It is a contradiction.

REMARK. To be rigorus we should write L = L, + ¢L,, where
L, and L, are wm-harmonic (see Rudin, p. 16), correspondingly L* =
L} + iL¥, and notation L = P[L*] means L, = P[L,] and L, = P[L#].

The proof of our claim concerning the boundary values of
bounded holomorphic functions on T(4,) is rather long; it is a re-
production of a theorem of Fatou which is a folklore in the area of
boundary values of holomorphic functions, we therefore take the
liberty to skip the proof here. Proofs and references of relevant
results can be found in “A. Koranyi—E. M. Stein: Fatou’s theorem
for generalized half planes”. (Estratto dagli Annali della, Scuola
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Normale Superiore di Pisa classe di Science, Vol. XXII, Fase. I,
(1968).)

4. An estimate of Eisenman-Kobayashi measure. We start
with the definitions of Carathéodory and Eisenman-Kobayashi
measures. It is easy to check the measure U on 4, given below is
invariant under biholomorphisms;

I VA S
U=1-—-—"——--dzAdZ’ .
Ra o
(Note: We use the notation [U]| to stand for IT:-, (4/|(1 — [27[)?]).)
Let D be a bounded domain in C%. The Carathéodory measure
C, is defined as follows:

CD(x) = SI}p (f* U)x ’

where the supremun is taken over all holomorphic maps f: D — 4,.
The Eisenman-Kobayashi £, is defined as follows:

Ep(w) = inf (F7)* U, -

Where the infimun is taken over all holomorphic maps f: 4,— D
which maps the origin “O” of 4, to 2 and is nondegenerate at “O”.

In this section we shall derive an estimate of Eisenman-Kobayashi
measure (in the case of metric, such an estimate was first obtained
by R. L. Royden).

DEFINITION. 2, we D, then d,(z, w) = inf {P(a, b)|f € Hol (4,, D)
s.t. fla) = z, f(b) = w, P is the Kobayashi metric in 4,}.
Let D, be another domain in C? such that D, N D is nonempty.

DEFINITION. For ze DN D,

dp-p,(2) = inf {d,(2, w)|w belongs to D but not D} .

THEOREM 4.1. Let D = DN D,. Then for all ze D, we have
|E5(2)| = |eot hdp_p,(2)* - | Ep(2)] .

Proof. First of all let us fix a constant » as follows, » =
sup {t|there exists f e Hol (4, D), f(0) = z, |det (df(0))| = 16}.

Then we choose a number R slightly larger than . From our
choice of 7 it is obvious that there is a f € Hol (4%, D) s.t. f(0) = 2,
|det (df(0))| = 16, and it maps a boundary point of 4; to a point
belonging to D — D. One can see, if w is this point belonging to
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D — D, then d,_,(2) < dy(z, w).
From the definition of d,(z, w) we observe that

. 1+Z
oz, w) < = In[— &
2 11

R

Then it implies

() = ot hdpn e - (3)

n
ER———t]

It is easy to see that the above inequality together with the
definition of Eisenman-Kobayashi measure imply our theorem im-
mediately.

5. Some estimates of Kobayashi metric inside the cones.
Let D be a domain in C*, we denote by d% the Kobayashi metric
on D. If D is the upper-half plane H = {x + iy|y > 0}, d% is then
induced by (2V/da® + dy®)/y. Suppose P is the origin of z-plane and

? is a cone in H with vertex at P and extended angle #, where

0so<mx/2

> x

In the following theorem we assume that z = (0, ¥) is a point
on the y-axis.

THEOREM 5.1. d%(z, 0I'%) = 21n (tan 6 + sec 6) where d%(z, o'%) =
the distance from #z to the boundary of I'% (i.e., 0I'%) with respect
to d%.

Proof. It is well-known that the geodesic of the metric
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(2V'dx* + dy?)/y passing through z is a great circle (with radius |y|
and center at P). Let 2’ and z” be the points of intersection of
this circle with oI";. Then the length of the arc 2z’ is equal to

4 g

zg ydg =2§ 96 _ o1n (tan o + secd) .
o (y cos ¢) 0 COS ¢

We need the following known result in Riemannian geometry for

our proof.

THEOREM. Let M be a simply connected complete Riemannian
manifold of megative sectional curvature, then for an two points
in M there exists one and only one minimizing geodesic Joining
them.

Now suppose that w' is a point on oI'% such that the length of
2w’ =d%(2,0I'}). By the symmetric properties of I'4 and 2V d2*+dy®)/y
one easily observes that there exists a point w” on the other side of
I'% s.t. Pw"” = Pw' (with respect to euclidean length). Let w be the
point of intersection of y-axis and the great circle of radius Pw’ and
with center at P. Since the arc ww' is a minimizing geodesic joining
wand w’, hence d%(w,w") <d%(z,w"). d%(w,w")=d%(z,2")=2In(tanb+sech)
from the previous computation. Thus, one obtains

d4(z, 2') < d¥(z, w') = d¥%(z, 0I'%) .
It is now easy to conclude that
k(z, 04"y = 21In (tan § + sec ) .
THEOREM 5.2. Let P be a boundary point of the unit disc 4,.
Suppose that ' is a cone in 4, with vertex at P and extended angle

8, 0 <0< 7x/2 z 1s a point of the normal of 64, at P. (See our
figure.) Then we have df(z, 0I'?) = 21n (tan ¢ + sec 0).

"~

y

N

P

Proof. Since H D 4,, by the distance-decreasing property of
Kobayashi metrics we have
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5z, 0I'y) = diy(z, oI'}) .

Our theorem follows immediately from Theorem 5.1.

THEOREM 5.3. Let Pbe a point on T(4,) and A% a product cone
as before, 0 < 0 < /2. Then we have

di(z, 04%) = 21n (tan 6 + secd) .
Proof. It is clear from Theorem 5.2 and the remark below.

REMARK. It is a well-known fact in the theory of intrinsic
metrics that

d’jz(zu 2,) = sup {dﬁl(Pl(zl)) Py(z,)), ,:11<P2(zl), Py(2,))} .

It is now easy to observe the following.

THEOREM 5.4. With the assumptions in Theorem 5.3, we have
(1) Limy.., d5(2, 04%) = oo
(2) Lim,..,cot hd}(z, 04%) = 1.

Proof. Elementary.

6. Main part of the proof. We break our proof into several
steps:

(1) From Lemma 3.1 there exists a point, namely e T(4,),
which is not an accumulation point of f(s)N 4% in A% for sll 0 <
0 < /2. We choose a sequence {z;,} — P, where 2z, belongs to 4, — f(s)
and lies on the line R perpendicular to S® at P. Let {z,} be another
sequence in B,, where x,€{f '(z,)}. One easily verifies that {z,} —¢
(passing through a subsequence if necessary), where ¢ is a boundary
point B,.

(2) f:B,— 4, is a proper holomorphic map. Then

s = {z e B,|det (df(z)) = 0}

and f(s) are complex analytic varieties in B, and 4, respectively.
Furthermore, f: B, — s — 4, — f(s) is a finite complex analytic covering.
From the standard facts in theory of intrinsic measures ([4], [5]) we
have

( I ) Cdz—fm = CAZ’ CBz—s = Czaz

(II) B, ;02 B, B,z B,

(D) Cs, = f*(C.)

Hy, = fX(EL,).

(Volume-decreasing property under holomorphic maps.)
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IV) E, = C,, where D is any bounded domain

V) Eppoo = f*Eups)
(note: (B, — s, f, 4, — f(8)) is a covering).

(3) Making use of the above inequalities and equalities we
obtain

1> 10@)| _ [P CaED| _  [Ch@)| | E(2)]
- ]EBZ(xi)l o ,EBZ—s(xi)l }Edz-f(s)(zi)] ,E42—f(3)(zi)] ’

for all 4.
(4) The following lemma was derived in ([7]).

LEMMA. Let D be a complete hyperbolic bounded domain in C™.
Suppose that E, and C, are defined with respect to polydisc 4,. If
there exists x € D such that

| Ep(®) ] =1
| Co(@) | ’

then D is biholomorphic to 4,.

Since B, is homogeneous we have

Co@)| _ ¢

for all 7,
|E32(x1')|

where C is a constant which is not equal to 1. It is clear from (3)
that we would obtain a contradiction if the following identity holds

.| E(2)]
lim —=2_ =
2P | By, o(2:) ]

(5) First of all we know that
B s = Ey, from (2) (II).

Secondly, in the view of Theorem 4.1 we have the following ine-
quality

IEdg—-f(a)(zi)l = |eot th—Dl(zi) [*- ‘Edz(zi)l

where D = 4,, D, = 4, — f(s). Our proof would be completed if one
could show

LiI}l’l cot hdp_p(2;) = 1.
We note that d,_,,(2;) = du,(2, f(s)), where d,, was defined in §4. It
is trivial to observe d,, = d}, from our definition. Thus it is enough
for us to prove
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ngg cot hdji, (2, f(s)) = 1

(i.e., lim,,_- d}(z, f(s)) = o).
From our assumption P is not an accumulation point of f(s) N 4% in
A% for all 0 < 6 < =/2, for a fixed # between 0 and 7/2 we have

1,(2: 1(8)) = di(z, 04%)

if 7 is sufficiently large. However, it follows from Theorem 5.4
that

i(%,, 04%) = 21In (tan 6 + sec ) .
Now we can conclude

Lim df,(2,, f(s)) = 21n (tan g 4 sec d)

for a fixed 4.
Letting ¢ — /2, we thereby complete our proof (Theorem 5.4).
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