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Let H denote a Hubert space, and let B(H) denote the
algebra of all bounded linear operators on H. In this note,
an intrinsic characterization of those Banach subalgebras of
B{H) which are similar to approximately finite C*-subalgebras
of B(H) is obtained.

This can be viewed as a noncommutative analog of theorems of
Mackey ([9], p. 131) and Wermer ([10], Theorem 1). These authors
gave conditions on certain families of idempotents {Ea}aeA in B(H)
which insured the existence of an invertible T in B(H) such that
TEaT~ι is a projection for all a in A. The main idea of the present
paper involves finding conditions on certain families of matrix units
{e(i, j)} in B{H) which guarantee the existence of an invertible T in
B(H) for which {Te(i, j^T"1} spans a C*-algebra. This technique also
has interesting applications to the orthogonalization of continuous
representations of C*-algebras (cf. [11]).

2* Preliminary definitions and lemmas. We begin by recalling
the definition of an approximately finite C*-algebra. A C*-algebra
rέ? is approximately finite if there is an increasing sequence of finite
dimensional C*-subalgebras of ^ whose union is norm dense in ^.
These algebras were defined and studied by Ola Bratteli in 1972 ([1])
as a generalization of the UHF algebras of Glimm ([7]), and have
become popular objects of study among C*-algebra enthusiasts (cf.
[2], [3], [4L [5], and [8]).

The definition of approximate finiteness can be extended slightly
to the context of Banach algebras as follows:

DEFINITION 2.1. A Banach algebra j y is approximately finite
if there is an increasing sequence {j^}~=1 of finite dimensional, semi-
simple subalgebras such that j y = (\Jn *JK)~, where ~ denotes norm
closure.

Note that the most natural definition of approximate finiteness
for Banach algebras would not include the hypothesis of semisimplicity
on the j ^ ' s . It is included here primarily to simplify the statement
of Theorem 3.1 below.

Consider then an approximately finite Banach algebra ,.jy =
(Un ^K)"- Since each J < is by definition finite dimensional and
semisimple, it has a Wedderburn decomposition
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where J^n) is isomorphic to the full complex matrix algebra Mί%thi of
order [n, k]. (This notation is the same as [1].) One may hence select
matrix units {ek

n)(i, j): i, j — 1, , [n, k]{ for each Jϊfk

{n) for which

= linear span of {ek

n)(i, j): i, j = 1, , [w, &]} .

Now J^< £ «̂ K+i, and the selection of matrix units {ek

n)(i, j)} can be
made to reflect this inclusion. This is accomplished in the following
proposition, whose proof, left to the reader, is a straightforward
modification of the proof of Proposition 1.7 of [1].

PROPOSITION 2.2. Let J^ and J*f2 be finite dimensional, semisimple
algebras, with Wedderburn decompositions

), k = 1, , nt) , i = 1, 2 ,

Lei {β|υ(ί, i): i, i — 1, , [1, Z]}, I = 1, , wlf δe matrix units for J^.
If J^£J^£, ίA^^ f̂eβ?̂  exists unique nonnegative integers nki9 k = 1,
• , n2, ΐ = 1, , ^i, α^d matrix units M2)(i, j): i, i = 1, , [2, fc]},
Λ = 1, , n2 for J&ζ such that

Σ Λ J I , P] ^ [2, fc]

3) = Σ Σ < 2 ) ( Σ » W [ 1 , J>] + (m -

ϊ - 1 \

Σ nqp[lf p] + (m - l)^α ί + jj

The matrix units for J < are now chosen inductively by applying
Proposition 2.2 at the wth inclusion, so that for each n the matrix
units for J^+i satisfy (2.1) relative to the matrix units for JK
Such a selection of matrix units will be called an admissable selection
of matrix units for J^Γ

We turn now to the problem of orthogonalization of matrix units
in B(H) for a fixed Hubert space H. Recall that a set of bounded
operators {e(i, j): i, j — 1, , n) on H is said to form a system of
matrix units on H if

( i ) Σ?=i e(h i) — identity operator on H,
(ii) e(i, j)e(k, I) = δjk e(i, I), i, j , k, I = 1, , n9

where δjk denotes the Kronecker delta. {e(i, j): i, j = 1, , n} is
said to form a C*-system of matrix units if in addition to (i) and
(ii), one has
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(iii) e(i, j)* = e(j, i), i, j = 1, , w.

DEFINITION 2.3. Let {e(i, j): i, j = 1, - , n} be a system of matrix
units on H. An invertible operator T on if is said to orthogonalίze

1 ) * - Te(j, i)T~\ i,j = lf ; n ,

i.e., if {Te(i, j)T~ι: i, j = 1, , n} is a C*-system of matrix units
on H.

LEMMA 2.4. Let {e(i, j): i, j = 1, , }̂ 6e α system of matrix
units on H. Then there exists an invertible operator T on H which
orthogonalizes {e(i, j): i, j — 1, , n).

Proof. Set

We claim that T is invertible. For x in iί,

= Σ \\e(i,j)x\\2

^ Λ - ' I M I S

since x — Σ* e(ί, Ό#; ϊ7 is t ^ u s bounded below. By a theorem of T.
Crimmins ([6], Theorem 2.2),

( \ 1/2

Σ e(i> i)*β(i, i))

= Σ range of e(i, i)* .

Since Σ Ϊ β(i, Ό* = Λ fl" = Σ* range of e(i, i)*9 and therefore by (2.2),
T is surjective. T is hence invertible.

Let k and Z be fixed positive integers between 1 and n. Then

) Σ ( ( , i ) (

= ΣΦ\fc)Mi,ϊ),

so that if f(k, I) = Γe(fc, ί)T~\

(2.3) /(fc, I) - Γ - ^ Σ e(j, k)*e(j, l))Γ"1

Since Γ is positive, (2.3) yields
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/(M)* - (Te(k,

- /(ϊ, *) .

The next lemma is the basic orthogonalization lemma of Mackey
(see [9], p. 135).

LEMMA 2.5. Let {Elf — ,En} be a pairwise independent set of
idempotents in B(H) (i.e., E\ = Eif EiEj = 0,iΦ j) such that Σ?=i Et =
I, and let M > 0 be such that for every set {εlf , εn} on zero's and
one's.

Then for all x in H,

We now extend Lemma 2.5 to matrix units:

LEMMA 2.6. Let {e(i, j): i, j — 1, , n} be a system of matrix
units on H such that each e(i, i) is a projection. Let M > 0 be such
that \\e(i, j)\\ ^ M, i, j = 1, , n. Then for all x in H,

^ l i ^ H 2 ^ Σ \\e(i, j)x\\* g nM*\\*\\* •

Proof. {e(i, i): i = 1, , n} is a set of pairwise orthogonal pro-
jections with sum J, so if ^ C = range of e(i, i), i = 1, , n, then

Since β(i, j)e(k, k)^0,kΦ j, e(i, j)e(j, i) = e(i, i), and e(i, j)e(ί, j) =
e(i, j), we have

(2.4) kernel of e(i, j) 2 Θ
kΦj

(2.5) range of e(i, j) =

Suppose e(i, j)ίc = 0, with x = φ ? β l m,, m< e ^ ^ .
Then

(2.6) ms = e(j\ fix = β(i, i)e(i, i)a? = 0, i Φ j .

(2.4) and (2.6) imply

( 7 ) kernel of β(ί, j) =



SIMILARITY ORBITS OF APPROXIMATELY FINITE C*-ALGEBRAS 227

From (2.5) and (2.7), it follows that e(i, j) maps ^£ά bijeetively
onto c ^£. Therefore if e(i, j) is represented as an operator matrix
relative to the decomposition H = ^ x φ 0 ^/ίM then there exists
an invertible linear transformation T^\ ̂ y/^-^ ^/^ such that

(2.8) e(if j) has a matrix with TiS in the (ΐ, j)th position and zeros
elsewhere .

Set

From (2.8), we find that the operator matrix of e(i, j)*e(i, j) has
TijTij in the (j9 j)th position and zeros elsewhere, so that T is the
diagonal matrix

(2.9)

where

Γ =

(2.10)

Let xeH,x^ φ?= 1 xif xt e ^ < . By (2.9),

Σ \\e(ί, j)x\\> = (Tx, x)

— 2 J 111 χ i

Since ||e(i, i) || ^ M, i, j = 1, , ^,

(2.11) || TtJ\\ = ||β«, i ) | | ^ Jlf, i, i

Ύ I I 2 l
/

Also e(i, j)e(j, i) = e(i, i) implies
x in

1, • , n .

i9 so that by (2.11), for

(2.12)

INI2

Therefore by (2.10) and (2.12),
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± ϊ Έ i II*,II1)
Jyl ί^ΰ^n /

= nM-2\\x\\2 .

By (2.10) and (2.11),

Σ

LEMMA 2.7. Lβ£ {̂ J?=i δβ α pairwise independent set of idem-
potents in B(H) and M > 0 a constant satisfying the hypotheses of
Lemma 2.5. Then there exists an invertible T in B(H) such that
TE.T'1 is self-ad joint, i = 1, , n, and \\ T\\±J- £ 2M.

Proof. The proof is similar to the proof of Lemma 2.4. Set

ΣiEf

Then for x in H> Lemma 2.5 gives

whence | | Γ ± 1 | | < 2 M . One shows that (TE.T'ψ = TE,T~\ i - 1,
• , n, as before.

3* The theorem* The following theorem can now be stated
and proved.

THEOREM 3.1. Let jzf be a Banach subalgebra of B(H). Then
is similar to an approximately finite C*-subalgebra of B(H) if

and only if Jzf is approximately finite and the following condition
holds: there is an admissable selection of matrix units {e{

k

n)(i, j): if j =
1, , [k, n]}, k = 1, , rn for J^f and a constant M > 0 such that:

( i ) for each fixed n and for all sets {δlk): i — 1, , [n, k]} of
zero's and one's,

Σ |

(ii) for each k and n,
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\\eP(i, j)\\ £ M, i, j = 1, •• , K f t ] .

Moreover, if these conditions are met, an invertible operator imple-
menting the similarity can be chosen in the von Neumann algebra
generated by

Proof. (=>). Suppose & = TSsfT"1 is an approximately finite
C*-algebra for some invertible T in B(H). Thus, <iT = (U« ^«Γ,
where {^} is an ascending sequence of finite dimensional C*-
subalgebras. By Proposition 1.7 of [1], there is an admissable selec-
tion of C*-matrix units {fln)(i, j)> i, j = 1, , [n, k]}, k = 1, , rn

for ΐ f relative to {&„}. If JK = T~1(^nTf then {J<} is an increasing
sequence of finite dimensional, semisimple subalgebras of J%f such
that jzf = (U» ^K)~y so that j y is approximately finite, and if
e\?\i, j) = T-1fin)(i, j)T, then {ejr\if j): i, i = l, , [n, A]}, Λ = l, , rn

is an admissable selection of matrix units for Ĵ C
For each positive integer n, let diagpw, , λ j denote the n x n

diagonal matrix with main diagonal {λ:, , λ%}. Let {δlk): i = 1, ,
[̂ , &]}, fc = 1, , rn be sets of zeroes and one's. Let

Then

= max||diag(ίί*>, •••,&)II

^ 1 .

It therefore follows that (i) obtains with M = \\ T\\ \\ T'11|. (ii) follows
on noticing that ||/iw)(ί, j ) | | = 1 for all i, j , k, and n.

(<=). It will first be shown that there exists an invertible Tin
the von Neumann algebra generated by s%? such that Teln)(i, i)T~ι

is self-adjoint for all i, k, and n. Set

Then if # „ = / - * ; , &» = {En}U{elr\i,i):i = l9 , [n, k]9 k = 1, •• , r j

is a pairwise independent set of idempotents in B(H) with sum J.
It follows by (i) that g^ satisfies the hypotheses of Lemma 2.7 with
constant 2M + 1. By that lemma, an invertible ΓΛ in the C*-algebra
generated by Jϊf and / may hence be chosen such that Tne

{

k

n)(i, i)T^
is self-adjoint for i = 1, , [n, k], k = 1, , r%, and such that
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(3.1) || Γ*ιll ^ 2(2ΛΓ + 1) , n = 1, 2, . . . .

Since the selection of matrix units is admissable, for each fixed i, k,
and n9 eι

k

n)(i, ί) is a sum of a subfamily of idempotents e(

k

n+1)(j, j). It
follows that

(3.2) Tmek

n)(i, i)T~ι is self-adjoint, for all m ^ n .

Since closed balls are compact in the weak operator topology on
B(H), (3.1) implies the existence of a subsequence {nk} and an invertible
T in the von Neumann algebra generated by Saf for which

(3.3) Tlk > T\WOT) , k > oo .

Since each Tn is positive, we may assume T is positive.
Now fix i, k, and n. By (3.2), for x, y in H,

(3.4) (Γwβί >(i, ΐ)αj, Γ.0) - (Γwα?, rweiw)(i, ΐ)i/) , m^n.

The self-adjointness of T and each Γ» together with (3.3) and (3.4)
hence yield

(TeJTKi, i)x, Ty) = (Tx, Teίn)(i, i)y) ,

i.e., Teίn)(i, i )?" 1 is self-adjoint. There is therefore no loss of gen-
erality in assuming that ek

n)(i, i) is a projection for each ϊ, &, and n.
We have J ^ = (U» ̂ ^ ) ~ , where

o = v

Set

ΛβΛ) = range of Pi% ) .

For each k and n, {e{

k\i, j): ί, j = 1, , [w, Λ]} can be considered as
a system of m a t r i x uni t s in B(Min)). By (ii), {e{

k

n)(i, j)} satisfies t h e
hypotheses of Lemma 2.6, so if

[fc, 91]1 2

t h e n by t h a t lemma,

(3.5) imL^\\τk

n)x\\2^M2\\x\\2, xeMίn) .
M2

Now H = (range of P J 1 © ( 0 {Λβ*}: k = 1, , r j ) , and therefore if
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T. = (J - P.) © ( φ {Ώ*: * = 1, , r.}) ,

then by (3.5)

( 8 β 6 ) J M 1 <g || Γ β a . | | . <c j^iia-iii, x eH, n = 1, 2, . . . .

The proof of Lemma 2.4 shows that Tn orthogonalizes {ek

n)(i, j):
ίf j = 1, , [M, fc], fc = 1, , rΛ}. Since the selection of matrix units
is admissable, each e(

k

n)(i, j) is a sum of the form (2.1) of a subfamily
of matrix units of J ^ + i (3.6) hence allows one to use the previous
compactness argument to find a invertible operator T in the von
Neumann algebra generated by j y which orthogonalizes e{

k

n)(ί, j) for
all ί, j , k, and n. It follows that Ts^T~x is an approximately finite
C*-subalgebra of B(H).
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