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Let Ωu Ω2 c O be bounded pseudoconvex Reinhardt
domains with the property that zt zn Φ 0 for all
(2i, "'fZ^eΩj. A holomorphic mapping /: Ω1 —>Ω2 is discuss-
ed in terms of the induced mapping on homology /*:
H^lfR)-^H^2fR). Specifically, there is a norm on
HίiΩjfR) which must decrease under /*. As a consequence
we prove that a domain Ω as above is rigid in the sense of
H. Cartan: if / : £ - > # is holomorphic and f*:HAΩ,R)-+
Hx(pyR) is nonsingular, then / is an automorphism.

l Introduction* Let A(Rά) = {z e C: 1/Rd < \z\ < Rά) be an
annulus in the complex plane. If /: A(Rλ) —> A(R2) is a holomorphic
mapping, then the topological behavior of / is restricted in terms
of the moduli R1 and R2 (see Schiffer [6] and Huber [4]). With the
methods of Landau and Osserman [5] it will be possible to generalize
this result to certain domains which are (topologically) the products
of plane annuli. Domains satisfying (2) are also shown to be rigid;
see Theorem 2 and Remark 1. In [1] the homology group H2n_λ was
used to prove rigidity; here we discuss Hγ.

Let ΩdCn be a complex manifold and let

^ = (ueC\Ω), 0 < u < 1, u pluriharmonic} .

If 7 6 H^Ω, R) is a homology class, then a seminorm on 7 may be
defined by

(1) N{Ύ} = sup ( deu

where dc — iφ — d), (see Chern, Levine, and Nirenberg [2]). If
F: Ωx —> Ω2 is a holomorphic mapping, then the map on homology
F*\ Hι(Ωu R) —> ίίi(ιΩ2, R) must decrease this norm.

2* Computation of the intrinsic norm* We will compute this
norm for domains ΩczCn satisfying

Ω is connected, bounded, pseudoconvex, Reinhardt (i.e.,

(2) ( e ί Θ ί z 1 9 - , e i θ « z n ) e Ω i f z e Ω a n d θ l 9 -- , θ n e R ) , a n d i f

zeΩ, then zx zn Φ 0.

Let ωciRn be the logarithmic image of Ω9 i.e.,
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272 ERIC BEDFORD

Since Ω satisfies (2), ft) is convex. Choosing a point ζ e Ω, we define
7y 6 f?i(i2, JB) to be the homology class of the circle θ —> (ζlf ,
β%, , ζ j , 0 ̂  0 ̂  2τz\ Thus {72, , 7 j forms a basis for i?x(,Q, #).
For u 6 ̂ 7 we set

9 (2π)n Jo Jo

Since dc is linear and invariant under complex rotations,

dcu°dcu = ( (

for all uejK Let ^° = {ue^iu = u(ru , r j}. We note that
every element of ^° has the form u — c + c1 log ̂ 4 - 4- cn log rΛ.
For u°e^°9 the function Ife, ••-,£») = ^60(eίl, , βί%) is affine (linear
plus constant). A simple computation gives

Thus we conclude that

Nla^ + ••' + anyn} - 2π sup (aΛ- + + αΛ

where

^(0)) = {ϊ(ξ) affine: 0 < I(f) < 1, ξeω} .

We define the norm

— max I — min ί

so that £f is identified via the map ϊ -> I — 1(0) with Γ = {ί linear:
||11| ^ 1}. Clearly Γ = -Γ and Γ is convex. Let Rn

Γ denote the
Banach space Rn with Γ as its unit ball. By (3) the unit ball B of
Hx{Ωt R) is

= {7 = for

which is 1/27Γ times the unit ball of (Λ?)'
If α) = —a), then (J2;)' = JB?Γ, and thus J5 is naturally identified

in JB^ as B = (l/π)ω. If ω is any convex set, then the convex set
ώ=πBczRn satisfies ώ=—ώ and has the same unit ball, B, as ft). For
a general convex set ft), we may assume that 0 e ω and let p(ξ) be
its support function, i.e., p(ξ) is the distance from 0 of the hyper-



HOLOMORPHIC MAPPING OF FRODUCTS OF ANNULI IN Cn 273

plane which supports ω and has outward normal ζ. It follows that

Γ = jl(f) = Σ e&: (Σ c})" 2£ , , * , J1 (p(c) + p(-c)))

In terms of the basis {dθu , dθn}, Γ may be identified as a subset
of jEP(i2, R), and so H1 inherits the dual norm. Thus, for each a e
H\Ω, R) with a e dΓ, there exists 7 e H^Ω, R) such that 7 α = iV{7}

For w 6 ^ ϊeΓ, we will use the notation:

Lu(ξ) = w°(ee)

It is useful to know, given a homology class 7 6 .£̂ (42, Z), whether
there is an imbedded annulus φ: A(R) —> Ω such that <P*(\z\ = 1) = 7
and iSΓ{|2| = 1} = iV{7}. We do not know this in general, but this
happens when ω = — ω. For integers m1? , mn9 we define the map
φ: A(R) -> Cw by φ{τ) = (τws , τ"S, and thus ^ ( ] ^ | = 1) = Σ"V>V
It is easily seen that ^>(A(J?))ci2 for log R — μ \ί (μmlf , ^mn) e ft).
By the identification 5 = (l/π)ω, we have

for ^ = logjβ and μ(mlf , mΛ)

3* Extremal functions* To study holomorphic mappings we
will need to know that the function achieving the supremum in (1)
is unique.

PROPOSITION 1. If y is the homology class of {\z\ = 1} in the

annulus A{R)y then

21ogi2

is the unique function in ^ satisfying

(5) N{j}= [deu .

If v e ά?~ satisfies

cN{y} = [ dev

then

— \2π\v(reίθ) - u(r)\dθ ^ 4(1 - c)

2π Jo
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for 1/R < r < R.

Proof. The first assertion is well known. The idea of the proof
is that if v e ^ and if {u > v} is nonempty, then the homology
class of 7' = d{u > v} is homologous to 7. Thus if v satisfies (5),
then

\ d\u - v) = ( dc(u - v) = 0 .

Thus V(u — v) — 0 on 7', and by unique continuation, u = v on A{R).
For details, see Landau and Osserman [5], or [1].

For the second assertion, we consider the Laurent expansion

v(z) — cu(z) + c0 + Re g{z)

where g(z) — ΣSΦO c3-z3\ Since Re g{z) is a bounded harmonic function
on A(R), it has nontangential boundary limits a.e. on \z\ = R and
z\ = 1/R. It follows that

= 0

for 1/R <; r ^ R. Since 1; e ^ 7 it follows that c0 + c ^ 1 and
Regr(2;) ^ 1 — c — c0 for |^ | — i2; and c0 ^ 0, Reflr(«) ^ —c0 for |« | =

Therefore

2ττ Jo

for r = R and r = 1/iZ. Since Re r̂ is harmonic on A(R), this bound
holds for 1/R £ r ^ #. Thus

— Γ I u(r) - v(re<ί?) | dθ ^ 1 - c + c0 + — Γ" | Re g{eiθ) \ dθ
2π Jo 2π Jo

which gives the desired estimate.

PROPOSITION 2. Let Ω satisfy (2), and let rγsH1{Ωf R) be given.
If u satisfies (5), then u(z) — u\z) for all zeΩ such that log |# |
belongs to the convex hull of {ξ 6 do): Lu(ξ) = 0 or 1}. In particular,

if

there exist

p0 pt 6 ώ, LM(PI) = 1, Lu(po) = 0

set {cu , cn} is rationally

independent
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then u(z) = u\z) for all zeΩ.

Proof. Let us begin by recalling that I dc(u° — u) — 0 for all

7 e Hx{Ωf R). Thus there is a holomorphic function/ 6 ̂ (Ω) such that
u = ̂ ° + Re/. If the first part of the proposition is proved, then
it follows that Re/(s) = 0 on S = {zeΩ:log\z\ =Xc,XeR}9 if p0 = 0.
If (6) holds there is a one-dimensional complex manifold M =
{(τβl, , τCn): τ eC} Π Ω which is dense in S. Since M is complex,
it follows that / = 0 on M. Thus / = 0 on S, and so / = 0 on Ω.

Now we establish the first part of the proposition. Let p0, pλ e
dω be such that Lu(p0) = 0 and Lu{p^ — 1. Without loss of generality
we may assume that px = — p0. We first consider the case where
the ratios c3'/ck are all rational. Thus there are integers (mlf , mn)
such that Cj - μmό for some μ e JR. The mapping φm{τ) = (τmi, , τmn)
maps the annulus A(eμ) into i2, and the logarithmic image of φ(A(eμ))
is the segment (pQ9 pt). It follows that u(φ) and u\φ) both satisfy
(5), and thus by Proposition 1 u(φ) = w°(9>) on A. Since this argu-
ment applies to all mappings ψ{τ) — (eίOlτmi, , eiθnτmn), we conclude
that u(z) = ̂ °(̂ ) for all 2 such that log \z\e (p0, pj.

For general c, we may take a sequence {c8}, c8 = ft(m;, , m8,),
μseR, mleZ such that ± c s e ώ and cs converges to pλ. As before
we set φms — φs: A(eμή —> Ω. Thus

e(s)
2 log

where ε(s) is a function on A(eμή such that

lim ||ε(β)|| - 0 (here ||e(«)|| = sup |e(β)|)

If σ is the class of {|JS| = 1} in A(eμ ) then

dcu\φs) ^ \e(s)\\)N{σ}

Since

ψs)*σ (ψs)*σ
dcu°,

we have

\ d'ufr.) ^ (1 - \\e(8)\\)N{σ} .

By Proposition 1, then,
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S \u(φs(reί0)) — u°(φs(r))\dθ ^ 411
02π Jo

Clearly the same holds if φs is replaced by <p(y) = (eiθίzmι, , eiθnτm»)
with θl9 , θn 6 R.

Finally we will show that u(r) = %°(r) for r = Xc, 0 < λ < 1. If
this does not hold, then there exists δ > 0 such that \u(z) — %°(|«|)| > δ
for all z such that \z — r\ < δ. Now we may cover the set T —
{z e Ω: I ^ | = rό) with if balls (K large) of radius δ and centers
Qu *' , Qκ& T. At least one of these balls has the property that

9-77"

— ^ measure {0 < θ < 2π: \φs(ρei0) - qά\ < δ} ,

where 9s(/>) = r. Denote Arg {qβ) by (^x, , ψj. It follows that

^ δ measure {0 < θ < 2π: \Φs(ρeiβ) - r | < δ} ^

where φ s = {eΓi^τmι, , e~i<iif>Λτmw). Since this contradicts our previ-
ous estimate, we conclude that u(z) — u\z) if | z \ = r, which was
what we wanted to prove.

PROPOSITION 3. Let ωcRn be a bounded convex set. Given
c 6 Rn, c Φ 0, there exists u e J^, p0, px e do) such that p1 — p0 = Xc,
XeR, and Lu{pό) = j for j = 0, 1. Furthermore, there exist
ulf - , un e άf satisfying (6) and such that Luu , Lun are linearly
independent.

Proof. Let us first suppose that da) is smooth and strictly con-
vex. Let a:Sn~1->dω be the Gauss map, i.e., the outward normal
to dω at a(ξ) is ξ. Consider the map β: Sn~ι —> S% - 1 given by

Clearly /3(|) £ > 0, and thus β has degree 1, so that β is onto. Let
ς0 be a vector such that β(ξ0) = c/|c|. Then we take px = a(ξ0), p0 =
«( — ίo), and grad Lw = /3(f).

For general ω, we take an increasing sequence {ωό} of smoothly
bounded strictly convex sets. If uj, pi, p{ have the desired proper-
ties on (ΰj, we pass to a convergent subsequence to obtain u, p0, px.

Now we show that we can obtain the family {uu , un}. Let
us suppose that we have found {uu- -,Uj} with {Luu , Luj},
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1 ^ 3 < n, linearly independent and satisfying (6). Pick c e
Πfĉ i Ker Luk9 c Φ 0. It follows that if u3+1 satisfies the conclusion
of the first part of the proposition, then {Luu , Lu3+1} are linearly
independent. Now we perturb c slightly so that (6) is satisfied and
the set is still independent.

4* Application to holomorphic mappings* Let F: Ωx —> Ω2 be
a holomorphic mapping of domains satisfying (2). Then by the
integer matrix TF we will denote the map on integral homology
classes F* = TF:Z

n->Zn in terms of basis {ΊU •• ,7»}. It follows
that TP(BX) c B2 and T'F(Γ2) c Γ19 where TF is the transpose of TF,
and TF gives the action of F* on H\ If I(£) = Σ c ^ , then F*dcϊ
represents the same cohomology class as T'F(c). Writing u(z) — \F(z))
we have Lu(ξ) = T'F{c) ξ.

THEOREM 1. Let Ωlf Ω2 satisfy (2), and assume that ωx = — ωlf

ω2 = — (*)2. Lei T be an n x n matrix with integer entries. There
exists a holomorphic mapping F: Ωx -> Ω2 with TF — T if and only
if T{ω^)aω2. Furthermore T(ω±) = ω2 (i.e., F* is an isometry) if
and only if F is a proper covering map, and in this case F has
the form

F{z) = (ei$iz\ eiθ-z^)

where θu - , θn e R and tu •••,*« are the rows of T.

Proof. Let F: Ω1 —> Ω2 be given. Since F* must be norm-
decreasing, and since l/πa)j — Bj9 it follows that T{ω^) c ω2. Con-
versely, if T{ω^)dω2y we set F(zu •••, zJ = (2;*1, •••, ztn). Ex-
ponentiating the inclusion T{ύ>d c ft>2» we obtain JP7^!) c β2.

Now we assume that TF is an isometry, and let {uu « , w j c

^"°(ί?1) be the set constructed in Proposition 3. We may assume

that dcuά e dΓ, so there exists {Ti, , 7»} c Hι(Ωu R) such that

iSΓ{7i) = \ ^ % Now we pick %I, , u« e ^°(Ω2) such that the

cohomology class of dcu3 is the same as F*(dcu'ά). Thus

( d'uj = N{7j} = NiFxij} = S F*(d°uj) .

Since F is holomorphic,

( F*(d u;) = \ d°{u){F)) .

Since u3- satisfies (6), we conclude by Proposition 2, that u3

This gives n independent equations which have the form
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Σ % log Izt\ = ±c'iS log \Fi(z)\
i l i l

for j — 1, , n. Thus log \Ft{z)\ = Σ αϋlo& I^L ί = 1, , n. Since
TV = T, it follows that α^ = tiίf and so .F has the desired form.
Thus

so that det (dFJdz,) = (ΠΣU Fk/zk) det Γ =* 0. Since T{ω,) = α)2 it
follows that F is in fact a covering map and is proper.

Conversely, we shows that if F is a covering, then F* is an isometry.
We consider first the one-dimensional case /: A(Rλ) —> A(R2)9 where /
is a d-to-1 covering. If φ\ A(R\/d) -> A(R2) is given by φ(z) = 2*, then
taking a suitable branch of φ~\f) we obtain a biholomorphism
between A(Rt) and A(J?2/d). Since R1 = J?2/d, /* is an isometry.

For the general case, we consider integral homology classes
7' = Σ w/yί 6 iϊi(i22, Z). Let 9>: A' —> Ω2 be an imbedding of an
annulus so that φ*(σ) = 7' and (4) holds. If we set A — F~\φA!),
then Fu: A —> ^A' is a covering. F is proper, so F - 1 7 ' is a closed
curve in Ωx\ thus A is a 1-dimensional annulus and so (.Fu)* is an
isometry. We let σ be the generator of HX{A, Z), and we let 7 = Ίa

be the induced element of H1(ΩU Z). Thus ^ ( 7 ) = 7f, and so iV{7} ^
^{7'}. On the other hand, since AaΩu

N{7'} = N{σ'} = N{σ} ^ i\Γ{7} ,

and so i\Γ{7} = ^{^(7)}. Since this holds for all integral classes in
-Hi(β2, JB), it follows that F* is an isometry.

THEOREM 2. Let Ω19 Ω2 satisfy (2). If F: Ω±-> Ω2 is a holomor-
phic mapping such that F*: Hx{Ωlf R) —> Hx{Ω2f R) is an isometry,
then F is a covering map of the form

where cίt , cneC and tu , tn are the rows of TF. In particular,
if Qχ = Q2 and F* is nonsingularf then F is a biholomorphism.

Proof We repeat the appropriate portion of the proof of
Theorem 1 and conclude that if F* is an isometry, then

Co, + Σ cti log | ^ | = c'QJ + Σ us log I Ft(z) |

for j = 1, , w. Thus |2Γ,.(β) | = b^z^ |^Λ |6^, and so F has the
desired form since F* = Γ .̂ As before, det (dFJdZj) Φ 0. To show
that F is a covering, we show that F is proper. We have already
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shown that F(z) = (cλz\ , c%z**) and so for VeΓt, LV(F)eΓ1. We
set Uj(z) = supIe3Γiΐ(£). By the convexity of ωd, Uά is an exhaus-
tion for Ωd: dΩά = {z e £?,-: J7y(«) = 1}. As was noted above,

for V eΓ2. Since F* is an isometry, F*Γ2 = Γu and so

Ux{z) = Ut(F(z)) .

Thus JP is proper.
In case 4^ = 422, then F^BX c JE?1# Since TF has integer coefficients

and is invertible, det TF — ± 1 . Thus TF preserves volume, and so
TFBX = S lβ The inverse mapping is easily constructed as G(z) =
(C*S ' * * f ζ*n) where ζy = Sy/cy and sό is the i th row of the inverse
o — l

REMARK 1. It follows that domains satisfying (2) are rigid in
the sense of H. Cartan [2]: if f:Ω—>Ω is holomorphic and induces
a nonsingular mapping on HX(Ω, R)f then / is an automorphism. By
topological considerations, it follows that if /* is nonzero on the
generator of Hn(Ω, R)9 then /* is nonsingular on Hλ{Ω, R) and is thus
an automorphism. If T is a complex 1-dimensional torus and if
D c C is a disk, then T x D is a complex manifold homeomorphic
to A{R) x A(R) but is not rigid. We would expect, however, that
a bounded domain in Cn, homeomorphic to A(R) x x A(R), would
be rigid.

REMARK 2. The problem of finding nontrivial automorphisms
(i.e., other than z —»(eiθlzlf , ei0nzn)) of domain satisfying (2) is thus
reduced to finding TeGL(n,Z) such that TB = B. For instance, if

this argument shows that the automorphisms of the domain

< 1

are generated by the nontrivial automorphisms z —> (zlf , zj1, •••,«»)
and «y —> Â if i?y = Rk. Since a "generic" norm on Rn does not have
any nontrivial isometries, a "generic" domain satisfying (2) has only
trivial automorphisms.

REMARK 3. Let us consider domains satisfying (7) for some
fixed j :

Ω is connected, bounded, pseudoconvex, Reinhardt, if zeΩ,
(7) then zu , z3- Φ 0, and there are points Pj+U •• ,P w ef l

such that the kth coordinate of Pk is 0 .



280 ERIC BEDFORD

Let p: Cn->Cj be projection onto the first j variables, and set Ωo =
p(Ω). Looking at the logarithmic image of Ω, which is convex, one
may deduce that Ωo x {0} C Ω. By the norm-decreasing property of
inclusion i: Ωo —•» Ω and projection p: Ω —> i20, it follows that ί* and
p* are isometries of Hλ. Thus the norm of a domain satisfying (7)
may be computed in terms of Ωo, which satisfies (2).

REMARK 4. The following observation extends Proposition 2.

PROPOSITION 4. Let Ω satisfy (2), and assume that for each
p edco there is a unique supporting hyperplane at p. Then for
each homology class y e H^Ω, R) there is a unique function u e Ĵ ~°

such that N{Ύ} — I dcu.

Proof. We show that the leJΐf which achieves the supremum
in (3) is unique. Suppose, to the contrary, that lu I2 6 £f have this
property. Then so does I = (ϊx + ϊ2)/2. Since I is extremal, there
must be points pr, p" e dω such that l(pf) = 0 and l(p") = 1. Thus
we must have lλ(p") = k(p") — 1, and so the half spaces {ξ: ̂ (f) <£ 1}
and {(J: (̂1) ^ 1} both support <« at p". By assumption, then, lx is a
multiple of ϊ2. Since Ii(p') = I2(^;/) = 0, it follows that Ix = I2, which
completes the proof.

EXAMPLE. If Ω — A(R) x A(R), then the homology class 7 =
7i + 72 has norm 7r/log i?. For 0 ̂  λ <; 1, the function

i ( 1 - λ) log
log J?

belongs to ^"° and satisfies (5), and so the extremal function is not
unique.

A slight modification of the proof of Proposition 4 shows that
uniqueness holds if 7 = Σ aHi does not have the property:

if t0 > 0 is such that toa e dΓ ,
(8) then there is a segment IadΓ

containing toa with J l α .

Clearly there is a dense subset of H1 where (8) does not hold.
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