Pacific Journal of Mathematics

HOLOMORPHIC MAPPING OF PRODUCTS OF ANNULI IN C*ⁿ*

ERIC BEDFORD

Vol. 87, No. 2 **February 1980**

HOLOMORPHIC MAPPING OF PRODUCTS OF ANNULI IN $Cⁿ$

ERIC BEDFORD

Let $\Omega_1, \Omega_2 \subset C^n$ be bounded pseudoconvex Reinhardt domains with the property that $z_1 \cdots z_n \neq 0$ for all $(z_1, \dots, z_n) \in \overline{\Omega}_j$. A holomorphic mapping $f: \Omega_1 \to \Omega_2$ is discussed in terms of the induced mapping on homology f_* : $H_1(\Omega_1, R) \to H_1(\Omega_2, R)$. Specifically, there is a norm on $H_1(\Omega_j, R)$ which must decrease under f_* . As a consequence we prove that a domain Ω as above is rigid in the sense of H. Cartan: if $f: \Omega \to \Omega$ is holomorphic and $f_*: H_1(\Omega, R) \to$ $H_1(\Omega, R)$ is nonsingular, then f is an automorphism.

1. Introduction. Let $A(R_i) = \{z \in \mathbb{C}: 1/R_i < |z| < R_i\}$ be an annulus in the complex plane. If $f: A(R_1) \to A(R_2)$ is a holomorphic mapping, then the topological behavior of f is restricted in terms of the moduli R_1 and R_2 (see Schiffer [6] and Huber [4]). With the methods of Landau and Osserman [5] it will be possible to generalize this result to certain domains which are (topologically) the products of plane annuli. Domains satisfying (2) are also shown to be rigid; see Theorem 2 and Remark 1. In [1] the homology group H_{2n-1} was used to prove rigidity; here we discuss $H₁$.

Let $\Omega \subset \mathbb{C}^n$ be a complex manifold and let

$$
\mathscr{F} = \{u \in C^2(\Omega), \ 0 < u < 1, \ u \ \text{pluriharmonic}\}
$$

If $\gamma \in H_1(\Omega, \mathbb{R})$ is a homology class, then a seminorm on γ may be defined by

$$
(1) \t N\{\gamma\} = \sup_{u \in \mathscr{F}} \int_{\gamma} d^c u
$$

where $d^c = i(\bar{\partial} - \partial)$, (see Chern, Levine, and Nirenberg [2]). If $F: \Omega_1 \to \Omega_2$ is a holomorphic mapping, then the map on homology $F_*: H_1(\Omega_1, R) \to H_1(\Omega_2, R)$ must decrease this norm.

2. Computation of the intrinsic norm. We will compute this norm for domains $\Omega \subset \mathbb{C}^n$ satisfying

\n- $$
\Omega
$$
 is connected, bounded, pseudoconvex, Reinhardt (i.e., (2)) $(e^{i\theta_1}z_1, \dots, e^{i\theta_n}z_n) \in \Omega$ if $z \in \Omega$ and $\theta_1, \dots, \theta_n \in \mathbb{R}$), and if $z \in \overline{\Omega}$, then $z_1 \cdots z_n \neq 0$.
\n

Let $\omega \subset \mathbb{R}^n$ be the logarithmic image of Ω , i.e.,

$$
\omega = \{(\xi_1, \ldots, \xi_n) \in \mathbb{R}^n : (e^{\xi_1}, \ldots, e^{\xi_n}) \in \Omega\}.
$$

Since Ω satisfies (2), ω is convex. Choosing a point $\zeta \in \Omega$, we define $\gamma_j \in H_1(\Omega, R)$ to be the homology class of the circle $\theta \to (\zeta_1, \cdots, \zeta_n)$ $e^{i\theta}\zeta_i, \dots, \zeta_n$, $0 \le \theta \le 2\pi$. Thus $\{\gamma_1, \dots, \gamma_n\}$ forms a basis for $H_1(\Omega, R)$. For $u \in \mathscr{F}$, we set

$$
u^{\scriptscriptstyle 0}(\pmb{r}_1,~\cdots,~\pmb{r}_n) = \frac{1}{(2\pi)^n}\int_0^{2\pi}\cdots\int_0^{2\pi}u(r_1e^{i\theta_1},~\cdots,~r_ne^{i\theta_n})\cdot d\theta_1\,\cdots\,d\theta_n\;.
$$

Since d^c is linear and invariant under complex rotations.

$$
\int_{r_j} d^c u = \int_{r_j} d^c u^{\scriptscriptstyle 0}
$$

for all $u \in \mathscr{F}$. Let $\mathscr{F}^0 = \{u \in \mathscr{F}: u = u(r_1, \dots, r_n)\}\$. We note that every element of \mathscr{F}° has the form $u = c + c_1 \log r_1 + \cdots + c_n \log r_n$. For $u^0 \in \mathscr{F}^0$, the function $\mathfrak{l}(\xi_1, \dots, \xi_n) = u^0(e^{\xi_1}, \dots, e^{\xi_n})$ is affine (linear plus constant). A simple computation gives

$$
\int_{r_j} d^c u^{\scriptscriptstyle 0} = \int_{r_j} \frac{\partial u}{\partial r_j} r_j d\theta_j = 2\pi \frac{\partial l}{\partial \xi_j}
$$

Thus we conclude that

$$
N\{a_1\gamma_1 + \cdots + a_n\gamma_n\} = 2\pi \sup_{t \in \mathscr{L}} \left(a_1 \frac{\partial l}{\partial \xi_1} + \cdots + a_n \frac{\partial l}{\partial \xi_n}\right)
$$

where

 $\mathcal{L}(\omega) = \{ \mathfrak{l}(\xi) \text{ affine: } 0 < \mathfrak{l}(\xi) < 1, \xi \in \omega \}.$

We define the norm

$$
||1|| = \max_{\overline{\omega}} 1 - \min_{\overline{\omega}} 1
$$

so that $\mathscr L$ is identified via the map $1 \rightarrow 1 - 1(0)$ with $\Gamma = \{1\}$ linear: $||1|| \leq 1$. Clearly $\Gamma = -\Gamma$ and Γ is convex. Let \mathbb{R}_{Γ}^{n} denote the Banach space $Rⁿ$ with Γ as its unit ball. By (3) the unit ball B of $H_1(\Omega, R)$ is

$$
B = \Bigl\{ \gamma = \sum_{j=1}^n a_j \gamma_j \colon \Bigl| \sum_{j=1}^n a_j \frac{\partial \mathfrak{l}}{\partial \xi_j} \Bigr| < \frac{1}{2\pi} \ \ \text{for} \ \ \mathfrak{l} ; ||\mathfrak{l}|| < 1 \Bigr\}
$$

which is $1/2\pi$ times the unit ball of $(Rⁿ_r)'$.

If $\omega = -\omega$, then $(R_{\omega}^{n})' = R_{2}^{n}$, and thus B is naturally identified in \mathbb{R}^n_{ω} as $B = (1/\pi)\omega$. If ω is any convex set, then the convex set $\tilde{\omega} = \pi B C R^*$ satisfies $\tilde{\omega} = -\tilde{\omega}$ and has the same unit ball, B, as ω . For a general convex set ω , we may assume that $0 \in \omega$ and let $\rho(\xi)$ be its support function, i.e., $\rho(\xi)$ is the distance from 0 of the hyperplane which supports ω and has outward normal ξ . It follows that

$$
\Gamma = \left\{ \mathrm{I}(\xi) = \sum c_j \xi_j : (\sum c_j^2)^{1/2} \leq \frac{1}{(\rho(c) + \rho(-c))} \right\}
$$

In terms of the basis $\{d\theta_1, \dots, d\theta_n\}$, Γ may be identified as a subset of $H^1(\Omega, R)$, and so H^1 inherits the dual norm. Thus, for each $a \in$ $H^{1}(\Omega, \mathbf{R})$ with $a \in \partial \Gamma$, there exists $\gamma \in H_{1}(\Omega, \mathbf{R})$ such that $\gamma \cdot a = N(\gamma)$.

For $u \in \mathscr{F}$, $I \in \Gamma$, we will use the notation:

$$
Lu(\xi) = u^{\scriptscriptstyle 0}(e^{\scriptscriptstyle \xi})\overline{\widetilde{\mathfrak{l}}}(z) = \mathfrak{l}(\log|z|)\ .
$$

It is useful to know, given a homology class $\gamma \in H_1(\Omega, \mathbb{Z})$, whether there is an imbedded annulus $\varphi: A(R) \to \Omega$ such that $\varphi_*(|z|=1) = \gamma$ and $N(|z| = 1) = N(\gamma)$. We do not know this in general, but this happens when $\omega = -\omega$. For integers m_1, \dots, m_n , we define the map $\varphi: A(R) \to C^*$ by $\varphi(\tau) = (\tau^{m_1}, \cdots, \tau^{m_n}),$ and thus $\varphi_*(|z|=1) = \sum m_i \gamma_i.$ It is easily seen that $\varphi(A(R)) \subset \Omega$ for $\log R = \mu$ if $(\mu m_1, \dots, \mu m_n) \in \omega$. By the identification $B = (1/\pi)\omega$, we have

(4)
$$
N(\sigma) = \frac{\pi}{\mu} = N{\varphi_*(\sigma)} = N{\sum m_j \gamma_j}
$$

for $\mu = \log R$ and $\mu(m_1, \dots, m_n) \in \partial \omega$.

3. Extremal functions. To study holomorphic mappings we will need to know that the function achieving the supremum in (1) is unique.

PROPOSITION 1. If γ is the homology class of $\{|\mathbf{z}| = 1\}$ in the annulus $A(R)$, then

$$
u=\frac{\log R|z|}{2\log R}
$$

is the unique function in $\mathscr F$ satisfying

$$
(5) \t N\{\gamma\} = \int_{\gamma} d^c u \; .
$$

If $v \in \mathcal{F}$ satisfies

$$
cN\!\{\gamma\}=\int_{\scriptscriptstyle{\mathcal{T}}} d^{\scriptscriptstyle{c}}v
$$

then

$$
\frac{1}{2\pi}\int_0^{2\pi} |v(re^{i\theta})-u(r)|d\theta \leq 4(1-c)
$$

for $1/R < r < R$.

Proof. The first assertion is well known. The idea of the proof is that if $v \in \mathcal{F}$, and if $\{u > v\}$ is nonempty, then the homology class of $\gamma' = \partial \{u > v\}$ is homologous to γ . Thus if v satisfies (5), then

$$
\int_{\scriptscriptstyle {\cal T}} d^c (u\,-\,v)=\int_{\scriptscriptstyle {\cal T}'} d^c (u\,-\,v)=0\,\,.
$$

Thus $F(u - v) = 0$ on γ' , and by unique continuation, $u = v$ on $A(R)$. For details, see Landau and Osserman [5], or [1].

For the second assertion, we consider the Laurent expansion

$$
v(z) = cu(z) + c_0 + \text{Re } g(z)
$$

where $g(z) = \sum_{i \neq 0} c_i z^i$. Since Re $g(z)$ is a bounded harmonic function on $A(R)$, it has nontangential boundary limits a.e. on $|z|=R$ and $|z|=1/R$. It follows that

$$
\int_0^{2\pi} {\rm Re}\ g(re^{i\theta}) d\theta = 0
$$

for $1/R \le r \le R$. Since $v \in \mathcal{F}$, it follows that $c_0 + c \le 1$ and $\text{Re } g(z) \leq 1-c-c_0$ for $|z|=R$; and $c_0 \geq 0$, $\text{Re } g(z) \geq -c_0$ for $|z|=$ $1/R.$ Therefore

$$
\frac{1}{2\pi}\int_0^{2\pi} |{\rm Re} \, g(re^{i\theta})| d\theta \leq 2(1-c)
$$

for $r = R$ and $r = 1/R$. Since Reg is harmonic on $A(R)$, this bound holds for $1/R \le r \le R$. Thus

$$
\frac{1}{2\pi}\int_0^{2\pi} |u(r) - v(r e^{i\theta})| d\theta \leq 1 - c + c_0 + \frac{1}{2\pi}\int_0^{2\pi} |Re\, g(e^{i\theta})| d\theta
$$

which gives the desired estimate.

PROPOSITION 2. Let Ω satisfy (2), and let $\gamma \in H_1(\Omega, \mathbb{R})$ be given. If u satisfies (5), then $u(z) = u^0(z)$ for all $z \in \Omega$ such that $\log |z|$ belongs to the convex hull of $\{\xi \in \partial \omega : Lu(\xi) = 0 \text{ or } 1\}$. In particular, if

\n
$$
there \; exist
$$
\n
$$
p_0 \; p_1 \in \bar{\omega}, \; Lu(p_1) = 1, \; Lu(p_0) = 0
$$
\n
$$
c = (c_1, \; \cdots, \; c_n) = p_1 - p_0 \; and \; the
$$
\n
$$
set \; \{c_1, \; \cdots, \; c_n\} \; is \; rationally
$$
\n
$$
independent
$$
\n

then $u(z) = u^0(z)$ for all $z \in \Omega$.

Proof. Let us begin by recalling that $\int_{\gamma} d^c(u^0 - u) = 0$ for all $\gamma \in H_1(\Omega, R)$. Thus there is a holomorphic function $f \in \mathcal{O}(\Omega)$ such that $u = u^0 + \text{Re } f$. If the first part of the proposition is proved, then it follows that $\text{Re } f(z) = 0$ on $S = \{z \in \Omega : \log |z| = \lambda c, \lambda \in R\}$, if $p_0 = 0$. If (6) holds there is a one-dimensional complex manifold $M =$ $\{(\tau^{c_1}, \dots, \tau^{c_n}) : \tau \in C\} \cap \Omega$ which is dense in S. Since M is complex, it follows that $f = 0$ on M. Thus $f = 0$ on S, and so $f = 0$ on Ω .

Now we establish the first part of the proposition. Let $p_0, p_1 \in$ $\partial\omega$ be such that $Lu(p_0) = 0$ and $Lu(p_1) = 1$. Without loss of generality we may assume that $p_1 = -p_0$. We first consider the case where the ratios c_i/c_k are all rational. Thus there are integers (m_1, \dots, m_n) such that $c_i = \mu m_i$ for some $\mu \in \mathbb{R}$. The mapping $\varphi_m(\tau) = (\tau^{m_1}, \dots, \tau^{m_n})$ maps the annulus $A(e^{\mu})$ into Ω , and the logarithmic image of $\varphi(A(e^{\mu}))$ is the segment (p_0, p_1) . It follows that $u(\varphi)$ and $u^0(\varphi)$ both satisfy (5), and thus by Proposition 1 $u(\varphi) = u^{0}(\varphi)$ on A. Since this argument applies to all mappings $\varphi(\tau) = (e^{i\theta_1} \tau^{m_1}, \cdots, e^{i\theta_n} \tau^{m_n})$, we conclude that $u(z) = u^0(z)$ for all z such that $\log |z| \in (p_0, p_1)$.

For general c, we may take a sequence $\{c^*\}, c^* = \mu_s(m_1^*, \dots, m_n^*)$, $\mu_s \in \mathbb{R}$, $m_i^s \in \mathbb{Z}$ such that $\pm c^s \in \bar{\omega}$ and c^s converges to p_i . As before we set $\varphi_{m^s} = \varphi_s \colon A(e^{\mu_s}) \to \Omega$. Thus

$$
u^{\scriptscriptstyle 0} \! \left(\mathfrak \varphi_s \! \left(z \right) \right) = \frac{\log e^{\mu_s} |z|}{2 \log e^{\scriptscriptstyle \mu_s}} + \varepsilon(s)
$$

where $\varepsilon(s)$ is a function on $A(e^{u_s})$ such that

$$
\lim_{s\to\infty}||\varepsilon(s)||=0\ \ (\text{here}\ \,||\varepsilon(s)||=\sup_{A(e^{i\ell s})}|\varepsilon(s)|)\ .
$$

If σ is the class of $\{|z|=1\}$ in $A(e^{\mu s})$ then

$$
\int_{\sigma} d^c u^{\scriptscriptstyle 0}(\varphi_s) \geqq (1-||\varepsilon(s)||)N\{\sigma\} \ .
$$

Since

$$
\int_{(\varphi_s)_*\sigma} d^c u = \int_{(\varphi_s)_*\sigma} d^c u^0,
$$

we have

$$
\int_{\sigma} d^{c} u(\varphi_{s}) \geq (1 - ||\varepsilon(s)||)N\{\sigma\} .
$$

By Proposition 1, then,

$$
\frac{1}{2\pi}\int_0^{2\pi} |u(\varphi_s(re^{i\theta}))\,-\,u^{\mathfrak{q}}(\varphi_s(r))\,|\,d\theta\leqq 4\,||\,\varepsilon(s)||\;.
$$

Clearly the same holds if φ_s is replaced by $\varphi(\gamma) = (e^{i\theta_1} \tau^{m_1}, \cdots, e^{i\theta_n} \tau^{m_n})$ with $\theta_1, \dots, \theta_n \in \mathbb{R}$.

Finally we will show that $u(r) = u^0(r)$ for $r = \lambda c$, $0 < \lambda < 1$. If this does not hold, then there exists $\delta > 0$ such that $|u(z) - u^o(|z|)| > \delta$ for all z such that $|z - r| < \delta$. Now we may cover the set $T =$ $\{z \in \Omega : |z_i| = r_j\}$ with K balls (K large) of radius δ and centers $q_1, \dots, q_k \in T$. At least one of these balls has the property that

$$
\frac{2\pi}{K} \leqq \text{measure } \{ 0 < \theta < 2\pi \text{: } |\varphi_{\scriptscriptstyle{s}}(\rho e^{{\scriptscriptstyle{i}} \theta}) - q_{\scriptscriptstyle{j}}| < \delta \} \text{ , }
$$

where $\varphi_s(\rho) = r$. Denote Arg (q_j) by (ψ_1, \dots, ψ_n) . It follows that

$$
\begin{aligned} \int_0^{2\pi} | \, u(\widetilde{\varphi}_s(\rho e^{i\theta})) \, - \, u^\mathfrak{d}(r) \, | \, d\theta \\ &\geq \delta \, \text{ measure } \left\{ 0 < \theta < 2\pi \colon | \, \widetilde{\varphi}_s(\rho e^{i\theta}) \, - \, r \, | \, < \delta \right\} \geq \frac{2\pi \delta}{K} \end{aligned}
$$

where $\widetilde{\varphi}_s = (e^{-i\psi_1} \tau^{m_1}, \cdots, e^{-i\psi_n} \tau^{m_n}).$ Since this contradicts our previous estimate, we conclude that $u(z) = u^0(z)$ if $|z| = r$, which was what we wanted to prove.

PROPOSITION 3. Let $\omega \subset \mathbb{R}^n$ be a bounded convex set. Given $c \in \mathbb{R}^n$, $c \neq 0$, there exists $u \in \mathcal{F}$, p_0 , $p_1 \in \partial \omega$ such that $p_1 - p_0 = \lambda c$, $\lambda \in \mathbf{R}$, and $Lu(p_j) = j$ for $j = 0, 1$. Furthermore, there exist $u_1, \dots, u_n \in \mathscr{F}$ satisfying (6) and such that Lu_1, \dots, Lu_n are linearly *independent.*

Proof. Let us first suppose that $\partial \omega$ is smooth and strictly convex. Let $\alpha: S^{n-1} \to \partial \omega$ be the Gauss map, i.e., the outward normal to $\partial\omega$ at $\alpha(\xi)$ is ξ . Consider the map $\beta: S^{n-1} \to S^{n-1}$ given by

$$
\beta(\xi) = \frac{\alpha(\xi) - \alpha(-\xi)}{|\alpha(\xi) - \alpha(-\xi)|}.
$$

Clearly $\beta(\xi) \cdot \xi > 0$, and thus β has degree 1, so that β is onto. Let ξ_0 be a vector such that $\beta(\xi_0) = c/|c|$. Then we take $p_1 = \alpha(\xi_0)$, $p_0 =$ $\alpha(-\xi_0)$, and grad $Lu = \beta(\xi)$.

For general ω , we take an increasing sequence $\{\omega_i\}$ of smoothly bounded strictly convex sets. If u^j , p^j , p^j have the desired properties on ω_i , we pass to a convergent subsequence to obtain u, p_0 , p_1 .

Now we show that we can obtain the family $\{u_1, \dots, u_n\}$. Let us suppose that we have found $\{u_1, \dots, u_j\}$ with $\{Lu_1, \dots, Lu_j\}$

 $1 \leq j < n$, linearly independent and satisfying (6). Pick $c \in$ $\bigcap_{k\leq i}$ Ker Lu_k , $c\neq 0$. It follows that if u_{i+1} satisfies the conclusion of the first part of the proposition, then $\{Lu_1, \dots, Lu_{i+1}\}\$ are linearly independent. Now we perturb c slightly so that (6) is satisfied and the set is still independent.

4. Application to holomorphic mappings. Let $F: \Omega_1 \to \Omega_2$ be a holomorphic mapping of domains satisfying (2). Then by the integer matrix T_F we will denote the map on integral homology classes $F_* = T_F: \mathbb{Z}^n \to \mathbb{Z}^n$ in terms of basis $\{\gamma_1, \dots, \gamma_n\}$. It follows that $T_F(B_1) \subset B_2$ and $T'_F(\Gamma_2) \subset \Gamma_1$, where T'_F is the transpose of T_F , and T'_F gives the action of F^* on H^1 . If $\mathfrak{l}(\xi) = \sum c_i \xi_i$, then $F^*d^c\tilde{\mathfrak{l}}$ represents the same cohomology class as $T'_r(c)$. Writing $u(z) = \tilde{I}(F(z))$ we have $Lu(\xi) = T'_F(c) \cdot \xi$.

THEOREM 1. Let Ω_1 , Ω_2 satisfy (2), and assume that $\omega_1 = -\omega_1$, $\omega_2 = -\omega_2$. Let T be an $n \times n$ matrix with integer entries. There exists a holomorphic mapping $F: \Omega_1 \to \Omega_2$ with $T_F = T$ if and only if $T(\omega_1) \subset \omega_2$. Furthermore $T(\omega_1) = \omega_2$ (i.e., F_* is an isometry) if and only if F is a proper covering map, and in this case F has the form

$$
F(z)=(e^{i\theta_1}z^{t_1},\,e^{i\theta_n}z^{t_n})
$$

where $\theta_1, \dots, \theta_n \in \mathbb{R}$ and t_1, \dots, t_n are the rows of T.

Proof. Let $F: \Omega_1 \to \Omega_2$ be given. Since F_* must be normdecreasing, and since $1/\pi\omega_j = B_j$, it follows that $T(\omega_1) \subset \omega_2$. Conversely, if $T(\omega_1) \subset \omega_2$, we set $F(z_1, \dots, z_n) = (z^{t_1}, \dots, z^{t_n}).$ Ex ponentiating the inclusion $T(\omega_1) \subset \omega_2$, we obtain $F(\Omega_1) \subset \Omega_2$.

Now we assume that T_F is an isometry, and let $\{u_1, \dots, u_n\}$ $\mathscr{I}^0(\Omega)$ be the set constructed in Proposition 3. We may assume that $d^c u_j \in \partial \Gamma$, so there exists $\{\gamma_1, \dots, \gamma_n\} \subset H_1(\Omega_1, R)$ such that $N\{\gamma_i\} = \int_{\gamma_i} d^c u_i$. Now we pick $u'_1, \dots, u'_n \in \mathcal{F}^0(\Omega_2)$ such that the cohomology class of $d^c u_i$ is the same as $F^*(d^c u'_i)$. Thus

$$
\int_{\scriptscriptstyle \gamma_j} d^c u_j = N\{\gamma_j\} = N\{F_*\gamma_j\} = \int_{\scriptscriptstyle \gamma_j} F^*(d^c u_j) \; .
$$

Since F is holomorphic.

$$
\int_{r_j} F^*(d^{\epsilon} u_j) = \int_{r_j} d^{\epsilon}(u_j'(F)) .
$$

Since u_i satisfies (6), we conclude by Proposition 2, that $u_i =$ This gives n independent equations which have the form $u'(F)$.

$$
\sum_{i=1}^n c_{ij} \log |z_i| = \sum_{i=1}^n c'_{ij} \log |F_i(z)|
$$

for $j = 1, \dots, n$. Thus $\log |F_i(z)| = \sum a_{ij} \log |z_j|$, $i = 1, \dots, n$. Since $T_F = T$, it follows that $a_{ij} = t_{ij}$, and so F has the desired form. Thus

$$
\frac{\partial F_i}{\partial z_j} = \frac{t_{ij}}{z_j} F_i
$$

so that $\det (\partial F_i/\partial z_i) = (\prod_{k=1}^n F_k/z_k) \det T \neq 0$. Since $T(\omega_i) = \omega_i$ it follows that F is in fact a covering map and is proper.

Conversely, we shows that if F is a covering, then F_* is an isometry. We consider first the one-dimensional case $f: A(R_1) \to A(R_2)$, where f is a d-to-1 covering. If $\varphi: A(R_2^{\omega}) \to A(R_2)$ is given by $\varphi(z) = z^d$, then taking a suitable branch of $\varphi^{-1}(f)$ we obtain a biholomorphism between $A(R_1)$ and $A(R_2^{1/d})$. Since $R_1 = R_2^{1/d}$, f_* is an isometry.

For the general case, we consider integral homology classes $\gamma' = \sum m_j \gamma'_j \in H_1(\Omega_2, \mathbb{Z})$. Let $\varphi: A' \to \Omega_2$ be an imbedding of an annulus so that $\varphi_*(\sigma) = \gamma'$ and (4) holds. If we set $A = F^{-1}(\varphi A')$, then $F_{|A}: A \to \varphi A'$ is a covering. F is proper, so $F^{-1}\gamma'$ is a closed curve in Ω_i ; thus A is a 1-dimensional annulus and so $(F_{\mu})_*$ is an isometry. We let σ be the generator of $H_1(A, Z)$, and we let $\gamma = \gamma_a$ be the induced element of $H_1(\Omega_1, \mathbb{Z})$. Thus $F_*(\gamma) = \gamma'$, and so $N(\gamma) \geq$ $N(\gamma')$. On the other hand, since $A \subset \Omega_1$,

$$
N\{\gamma'\}=N\{\sigma'\}=N\{\sigma\}\geq N\{\gamma\}\ ,
$$

and so $N(\gamma) = N(F_*(\gamma))$. Since this holds for all integral classes in $H_1(\Omega_z, R)$, it follows that F_* is an isometry.

THEOREM 2. Let Ω_1 , Ω_2 satisfy (2). If $F: \Omega_1 \to \Omega_2$ is a holomorphic mapping such that $F_*: H_1(\Omega_1, \mathbb{R}) \to H_1(\Omega_2, \mathbb{R})$ is an isometry, then F is a covering map of the form

$$
F(z)=(c_1z^{t_1},\ \cdots,\ c_nz^{t_n})
$$

where $c_1, \dots, c_n \in \mathbb{C}$ and t_1, \dots, t_n are the rows of T_F . In particular, if $\Omega_1 = \Omega_2$ and F_* is nonsingular, then F is a biholomorphism.

Proof. We repeat the appropriate portion of the proof of Theorem 1 and conclude that if F_* is an isometry, then

$$
c_{\scriptscriptstyle 0j} + \sum\limits_{i=1}^{n} c_{\scriptscriptstyle ij} \log |z_{\scriptscriptstyle i}| = c_{\scriptscriptstyle 0j}' + \sum\limits_{i=1}^{n} c_{\scriptscriptstyle ij}' \log |F_{\scriptscriptstyle i}(z)|
$$

for $j = 1, \dots, n$. Thus $|F_i(z)| = b_i |z_1|^{b_{i,j}} \cdots |z_n|^{b_{nj}}$, and so F has the desired form since $F_* = T_F$. As before, det $(\partial F_i/\partial z_j) \neq 0$. To show that F is a covering, we show that F is proper. We have already

shown that $F(z) = (c_1 z^{t_1}, \dots, c_n z^{t_n})$ and so for $l' \in \Gamma_z$, $\tilde{L}l'(F) \in \Gamma_z$. We set $U_j(z) = \sup_{i \in \partial I_j} \tilde{l}(z)$. By the convexity of ω_j , U_j is an exhaustion for Ω_i : $\partial \Omega_j = \{z \in \overline{\Omega}_j : U_j(z) = 1\}$. As was noted above,

$$
{T}'_F{\mathfrak{l}}'=\widetilde{\mathfrak{l}}'(\log\,|\,F|)
$$

for $l' \in \Gamma_2$. Since F_* is an isometry, $F^* \Gamma_2 = \Gamma_1$, and so

$$
U_{\scriptscriptstyle 1}(z) = U_{\scriptscriptstyle 2}(F(z)) \ .
$$

Thus F is proper.

In case $\Omega_1 = \Omega_2$, then $F_*B_1 \subset B_1$. Since T_F has integer coefficients and is invertible, $\det T_F = \pm 1$. Thus T_F preserves volume, and so $T_{F}B_{1} = B_{1}$. The inverse mapping is easily constructed as $G(z) =$ $(\zeta^{s_1}, \cdots, \zeta^{s_n})$ where $\zeta_i = z_j/c_j$ and s_j is the jth row of the inverse $S = T^{-1}$.

REMARK 1. It follows that domains satisfying (2) are rigid in the sense of H. Cartan [2]: if $f: \Omega \to \Omega$ is holomorphic and induces a nonsingular mapping on $H_1(\Omega, R)$, then f is an automorphism. Bv topological considerations, it follows that if f_* is nonzero on the generator of $H_n(\Omega, \mathbf{R})$, then f_* is nonsingular on $H_1(\Omega, \mathbf{R})$ and is thus an automorphism. If T is a complex 1-dimensional torus and if $D\subset C$ is a disk, then $T\times D$ is a complex manifold homeomorphic to $A(R) \times A(R)$ but is not rigid. We would expect, however, that a bounded domain in C^* , homeomorphic to $A(R) \times \cdots \times A(R)$, would be rigid.

REMARK 2. The problem of finding nontrivial automorphisms (i.e., other than $z \rightarrow (e^{i\theta_1}z_1, \cdots, e^{i\theta_n}z_n)$) of domain satisfying (2) is thus reduced to finding $T \in GL(n, Z)$ such that $TB = B$. For instance, if $1 \leq p \lt \infty$, this argument shows that the automorphisms of the domain

$$
\varOmega = \Big\{z\in C^{\ast} \hbox{\rm : } \sum\limits_{j=1}^{\mathrlap{\,\,\circ\,}}\Big(\log \frac{\vert z_j\vert}{R_j}\Big)^{\pmb{p}} < 1\Big\}
$$

are generated by the nontrivial automorphisms $z \rightarrow (z_1, \dots, z_i^-, \dots, z_n)$ and $z_j \rightarrow z_k$ if $R_j = R_k$. Since a "generic" norm on R^* does not have any nontrivial isometries, a "generic" domain satisfying (2) has only trivial automorphisms.

REMARK 3. Let us consider domains satisfying (7) for some fixed j :

 Ω is connected, bounded, pseudoconvex, Reinhardt, if $z \in \overline{\Omega}$, (7) then $z_1, \dots, z_j \neq 0$, and there are points $P_{j+1}, \dots, P_n \in \overline{\Omega}$ such that the kth coordinate of P_k is 0.

Let $p: C^* \to C^j$ be projection onto the first j variables, and set $\Omega_0 =$ $p(\Omega)$. Looking at the logarithmic image of Ω , which is convex, one may deduce that $\Omega_0 \times \{0\} \subseteq \Omega$. By the norm-decreasing property of inclusion $i: \Omega_0 \to \Omega$ and projection $p: \Omega \to \Omega_0$, it follows that i_* and p_* are isometries of H_1 . Thus the norm of a domain satisfying (7) may be computed in terms of Ω_0 , which satisfies (2).

REMARK 4. The following observation extends Proposition 2.

PROPOSITION 4. Let Ω satisfy (2), and assume that for each $p \in \partial \omega$ there is a unique supporting hyperplane at p. Then for each homology class $\gamma \in H_1(\Omega, R)$ there is a unique function $u \in \mathcal{F}^{\circ}$ such that $N\{\gamma\} = \int_{\gamma} d^c u$.

Proof. We show that the $I \in \mathcal{L}$ which achieves the supremum in (3) is unique. Suppose, to the contrary, that $I_1, I_2 \in \mathcal{L}$ have this property. Then so does $I = (I_1 + I_2)/2$. Since I is extremal, there must be points p', $p'' \in \partial \omega$ such that $l(p') = 0$ and $l(p'') = 1$. Thus we must have $I_1(p'') = I_2(p'') = 1$, and so the half spaces $\{\xi: I_1(\xi) \leq 1\}$ and $\{\xi: I_1(\xi) \leq 1\}$ both support ω at p'' . By assumption, then, I_1 is a multiple of I_2 . Since $I_1(p') = I_2(p'') = 0$, it follows that $I_1 = I_2$, which completes the proof.

EXAMPLE. If $\Omega = A(R) \times A(R)$, then the homology class $\gamma =$ $\gamma_1 + \gamma_2$ has norm $\pi/\log R$. For $0 \le \lambda \le 1$, the function

$$
u_{\lambda} = \frac{1}{\log R} (\lambda \log |z_1| + (1 - \lambda) \log |z_{\lambda}|)
$$

belongs to \mathscr{I}° and satisfies (5), and so the extremal function is not unique.

A slight modification of the proof of Proposition 4 shows that uniqueness holds if $\gamma = \sum a_j \gamma_j$ does not have the property:

(8) if
$$
t_0 > 0
$$
 is such that $t_0 a \in \partial \Gamma$, then there is a segment $I \subset \partial \Gamma$ containing $t_0 a$ with $I \perp a$.

Clearly there is a dense subset of H_1 where (8) does not hold.

REFERENCES

^{1.} E. Bedford and D. Burns, Holomorphic mapping of annuli in $Cⁿ$ and the associated extremal function, Ann. Scuola Norm. Sup. Pisa, 3 (1979), 381-414.

^{2.} H. Cartan, Sur les fonctions de plusieurs variables complexes, Math. Z., 35 (1932). 760-773.

3. S.-S. Chern, H. Levine, and L. Nirenberg, Intrinsic norms on a complex manifold, Global Analysis. Papers in Honor of K. Kodaira. Princeton Univ. Press, 1969, 119-139. 4. H. Huber, Ueber analytische Abbildungen von Ringgebieten in Ringgebiete, Compos. Math., 9 (1951), 161-168.

5. H. Landau and R. Osserman, On analytic mappings of Riemann surfaces, J. Analyse Math., 7 (1959-60), 249-279.

6. M. Schiffer, On the modules of doubly connected domains, Quart. J. Math., 17 $(1946), 197-213.$

Received April 24, 1978.

PRINCETON UNIVERSITY PRINCETON, NJ 08544

../../../FrontMatter/paper.pdf

Pacific Journal of Mathematics
Vol. 87, No. 2 February, 1980 Vol. 87, No. 2

