Pacific Journal of Mathematics

HOLOMORPHIC MAPPING OF PRODUCTS OF ANNULI IN \mathbb{C}^n

ERIC BEDFORD

Vol. 87, No. 2 February 1980

HOLOMORPHIC MAPPING OF PRODUCTS OF ANNULI IN Cⁿ

ERIC BEDFORD

Let $\Omega_1,\Omega_2\subset C^n$ be bounded pseudoconvex Reinhardt domains with the property that $z_1\cdots z_n\neq 0$ for all $(z_1,\cdots,z_n)\in \overline{\Omega}_f$. A holomorphic mapping $f\colon \Omega_1\to\Omega_2$ is discussed in terms of the induced mapping on homology $f_*\colon H_1(\Omega_1,R)\to H_1(\Omega_2,R)$. Specifically, there is a norm on $H_1(\Omega_f,R)$ which must decrease under f_* . As a consequence we prove that a domain Ω as above is rigid in the sense of H. Cartan: if $f\colon \Omega\to\Omega$ is holomorphic and $f_*\colon H_1(\Omega,R)\to H_1(\Omega,R)$ is nonsingular, then f is an automorphism.

1. Introduction. Let $A(R_j) = \{z \in C : 1/R_j < |z| < R_j\}$ be an annulus in the complex plane. If $f : A(R_1) \to A(R_2)$ is a holomorphic mapping, then the topological behavior of f is restricted in terms of the moduli R_1 and R_2 (see Schiffer [6] and Huber [4]). With the methods of Landau and Osserman [5] it will be possible to generalize this result to certain domains which are (topologically) the products of plane annuli. Domains satisfying (2) are also shown to be rigid; see Theorem 2 and Remark 1. In [1] the homology group H_{2n-1} was used to prove rigidity; here we discuss H_1 .

Let $\Omega \subset C^n$ be a complex manifold and let

$$\mathcal{F} = \{u \in C^2(\Omega), \ 0 < u < 1, \ u \ \text{pluriharmonic}\}\ .$$

If $\gamma \in H_1(\Omega, \mathbb{R})$ is a homology class, then a seminorm on γ may be defined by

$$N\{\gamma\} = \sup_{u \in \mathscr{S}} \int_{\gamma} d^{\circ}u$$

where $d^c = i(\bar{\partial} - \partial)$, (see Chern, Levine, and Nirenberg [2]). If $F: \Omega_1 \to \Omega_2$ is a holomorphic mapping, then the map on homology $F_*: H_1(\Omega_1, \mathbf{R}) \to H_1(\Omega_2, \mathbf{R})$ must decrease this norm.

2. Computation of the intrinsic norm. We will compute this norm for domains $\Omega \subset C^n$ satisfying

 Ω is connected, bounded, pseudoconvex, Reinhardt (i.e., (2) $(e^{i\theta_1}z_1, \dots, e^{i\theta_n}z_n) \in \Omega$ if $z \in \Omega$ and $\theta_1, \dots, \theta_n \in R$), and if $z \in \overline{\Omega}$, then $z_1 \dots z_n \neq 0$.

Let $\omega \subset \mathbb{R}^n$ be the logarithmic image of Ω , i.e.,

$$\boldsymbol{\omega} = \{(\xi_1, \dots, \xi_n) \in \mathbf{R}^n : (e^{\xi_1}, \dots, e^{\xi_n}) \in \Omega\}.$$

Since Ω satisfies (2), ω is convex. Choosing a point $\zeta \in \Omega$, we define $\gamma_j \in H_1(\Omega, \mathbf{R})$ to be the homology class of the circle $\theta \to (\zeta_1, \dots, e^{i\theta}\zeta_j, \dots, \zeta_n)$, $0 \le \theta \le 2\pi$. Thus $\{\gamma_1, \dots, \gamma_n\}$ forms a basis for $H_1(\Omega, \mathbf{R})$. For $u \in \mathcal{F}$, we set

$$u^{\scriptscriptstyle 0}(\pmb{r}_{\scriptscriptstyle 1},\;\cdots,\;\pmb{r}_{\scriptscriptstyle n}) = rac{1}{(2\pi)^n} \int_{\scriptscriptstyle 0}^{\scriptscriptstyle 2\pi} \cdots \int_{\scriptscriptstyle 0}^{\scriptscriptstyle 2\pi} u(\pmb{r}_{\scriptscriptstyle 1}e^{i heta_{\scriptscriptstyle 1}},\;\cdots,\;\pmb{r}_{\scriptscriptstyle n}e^{i heta_{\scriptscriptstyle n}}) \cdot d heta_{\scriptscriptstyle 1}\;\cdots\;d heta_{\scriptscriptstyle n}\;.$$

Since d^c is linear and invariant under complex rotations,

$$\int_{r_{\boldsymbol{j}}} d^{\mathfrak{o}} u = \int_{r_{\boldsymbol{j}}} d^{\mathfrak{o}} u^{\mathfrak{o}}$$

for all $u \in \mathscr{F}$. Let $\mathscr{F}^0 = \{u \in \mathscr{F} : u = u(r_1, \dots, r_n)\}$. We note that every element of \mathscr{F}^0 has the form $u = c + c_1 \log r_1 + \dots + c_n \log r_n$. For $u^0 \in \mathscr{F}^0$, the function $\mathbb{I}(\xi_1, \dots, \xi_n) = u^0(e^{\xi_1}, \dots, e^{\xi_n})$ is affine (linear plus constant). A simple computation gives

$$\int_{ au_j} d^c u^{\scriptscriptstyle 0} = \int_{ au_j} rac{\partial u}{\partial r_i} r_j d heta_j = 2\pi rac{\partial \mathfrak{l}}{\partial \xi_i} \ .$$

Thus we conclude that

$$N\{a_1\gamma_1 + \cdots + a_n\gamma_n\} = 2\pi \sup_{\mathfrak{l}\in\mathscr{L}} \left(a_1\frac{\partial \mathfrak{l}}{\partial \xi_1} + \cdots + a_n\frac{\partial \mathfrak{l}}{\partial \xi_n}\right)$$

where

$$\mathscr{L}(\omega) = \{ \mathfrak{l}(\xi) \text{ affine: } 0 < \mathfrak{l}(\xi) < 1, \ \xi \in \omega \}.$$

We define the norm

$$||\mathfrak{I}|| = \max_{\overline{\omega}} \mathfrak{I} - \min_{\overline{\omega}} \mathfrak{I}$$

so that \mathscr{L} is identified via the map $\mathfrak{l} \to \mathfrak{l} - \mathfrak{l}(0)$ with $\Gamma = \{\mathfrak{l} \text{ linear: } ||\mathfrak{l}|| \leq 1\}$. Clearly $\Gamma = -\Gamma$ and Γ is convex. Let R_{Γ}^n denote the Banach space R^n with Γ as its unit ball. By (3) the unit ball R of $H_1(\Omega, R)$ is

$$B = \left\{ \gamma = \sum_{j=1}^n a_j \gamma_j : \left| \sum_{j=1}^n a_j rac{\partial \mathfrak{l}}{\partial \mathcal{E}_i}
ight| < rac{1}{2\pi} ext{ for } \mathfrak{l}; ||\mathfrak{l}|| < 1
ight\}$$

which is $1/2\pi$ times the unit ball of $(R_{\Gamma}^n)'$.

If $\omega = -\omega$, then $(R_{\omega}^n)' = R_{2\Gamma}^n$, and thus B is naturally identified in R_{ω}^n as $B = (1/\pi)\omega$. If ω is any convex set, then the convex set $\tilde{\omega} = \pi B \subset R^n$ satisfies $\tilde{\omega} = -\tilde{\omega}$ and has the same unit ball, B, as ω . For a general convex set ω , we may assume that $0 \in \omega$ and let $\rho(\xi)$ be its support function, i.e., $\rho(\xi)$ is the distance from 0 of the hyper-

plane which supports ω and has outward normal ξ . It follows that

$$arGamma = \left\{ oxed{\mathbb{I}(\xi)} = \sum c_j \xi_j \colon (\sum c_j^2)^{1/2} \leqq rac{1}{(
ho(c) +
ho(-c))}
ight\} \,.$$

In terms of the basis $\{d\theta_1, \dots, d\theta_n\}$, Γ may be identified as a subset of $H^1(\Omega, \mathbf{R})$, and so H^1 inherits the dual norm. Thus, for each $a \in H^1(\Omega, \mathbf{R})$ with $a \in \partial \Gamma$, there exists $\gamma \in H_1(\Omega, \mathbf{R})$ such that $\gamma \cdot a = N\{\gamma\}$. For $u \in \mathscr{F}$, $l \in \Gamma$, we will use the notation:

$$Lu(\xi) = u^{\scriptscriptstyle{0}}(e^{\varepsilon})$$
 $\widetilde{\mathfrak{l}}(z) = \mathfrak{l}(\log|z|)$.

It is useful to know, given a homology class $\gamma \in H_1(\Omega, \mathbb{Z})$, whether there is an imbedded annulus $\varphi \colon A(R) \to \Omega$ such that $\varphi_*(|z|=1) = \gamma$ and $N\{|z|=1\} = N\{\gamma\}$. We do not know this in general, but this happens when $\omega = -\omega$. For integers m_1, \dots, m_n , we define the map $\varphi \colon A(R) \to C^n$ by $\varphi(\tau) = (\tau^{m_1}, \dots, \tau^{m_n})$, and thus $\varphi_*(|z|=1) = \sum m_j \gamma_j$. It is easily seen that $\varphi(A(R)) \subset \Omega$ for $\log R = \mu$ if $(\mu m_1, \dots, \mu m_n) \in \omega$. By the identification $B = (1/\pi)\omega$, we have

$$N(\sigma) = \frac{\pi}{\mu} = N\{\varphi_*(\sigma)\} = N\{\sum m_j \gamma_j\}$$

for $\mu = \log R$ and $\mu(m_1, \dots, m_n) \in \partial \omega$.

3. Extremal functions. To study holomorphic mappings we will need to know that the function achieving the supremum in (1) is unique.

PROPOSITION 1. If γ is the homology class of $\{|z|=1\}$ in the annulus A(R), then

$$u = \frac{\log R|z|}{2\log R}$$

is the unique function in F satisfying

$$N\{\gamma\} = \int_{\gamma} d^{c}u .$$

If $v \in \mathcal{F}$ satisfies

$$cN\{\gamma\} = \int_{\gamma} d^c v$$

then

$$rac{1}{2\pi}\int_0^{2\pi}ig|v(re^{i heta})-u(r)ig|d heta \leq 4(1-c)$$

for 1/R < r < R.

Proof. The first assertion is well known. The idea of the proof is that if $v \in \mathscr{F}$, and if $\{u > v\}$ is nonempty, then the homology class of $\gamma' = \partial \{u > v\}$ is homologous to γ . Thus if v satisfies (5), then

$$\int_{r} d^{c}(u-v) = \int_{r'} d^{c}(u-v) = 0.$$

Thus V(u-v)=0 on γ' , and by unique continuation, u=v on A(R). For details, see Landau and Osserman [5], or [1].

For the second assertion, we consider the Laurent expansion

$$v(z) = cu(z) + c_0 + \operatorname{Re} g(z)$$

where $g(z) = \sum_{j\neq 0} c_j z^j$. Since Re g(z) is a bounded harmonic function on A(R), it has nontangential boundary limits a.e. on |z| = R and |z| = 1/R. It follows that

$$\int_0^{2\pi} {
m Re} \ g(re^{i heta}) d heta = 0$$

for $1/R \le r \le R$. Since $v \in \mathscr{T}$, it follows that $c_0 + c \le 1$ and $\operatorname{Re} g(z) \le 1 - c - c_0$ for |z| = R; and $c_0 \ge 0$, $\operatorname{Re} g(z) \ge -c_0$ for |z| = 1/R. Therefore

$$\frac{1}{2\pi}\int_0^{2\pi} |\operatorname{Re} g(re^{i\theta})| d\theta \leq 2(1-c)$$

for r=R and r=1/R. Since Re g is harmonic on A(R), this bound holds for $1/R \le r \le R$. Thus

$$rac{1}{2\pi}\int_{\scriptscriptstyle 0}^{\scriptscriptstyle 2\pi} |u(r)-v(re^{i heta})|d heta \leq 1-c+c_{\scriptscriptstyle 0}+rac{1}{2\pi}\int_{\scriptscriptstyle 0}^{\scriptscriptstyle 2\pi} |\operatorname{Re} g(e^{i heta})|d heta$$

which gives the desired estimate.

PROPOSITION 2. Let Ω satisfy (2), and let $\gamma \in H_1(\Omega, \mathbf{R})$ be given. If u satisfies (5), then $u(z) = u^{\circ}(z)$ for all $z \in \Omega$ such that $\log |z|$ belongs to the convex hull of $\{\xi \in \partial \omega \colon Lu(\xi) = 0 \text{ or } 1\}$. In particular, if

then $u(z) = u^{0}(z)$ for all $z \in \Omega$.

Proof. Let us begin by recalling that $\int_{\gamma} d^c(u^o - u) = 0$ for all $\gamma \in H_1(\Omega, \mathbf{R})$. Thus there is a holomorphic function $f \in \mathcal{O}(\Omega)$ such that $u = u^o + \operatorname{Re} f$. If the first part of the proposition is proved, then it follows that $\operatorname{Re} f(z) = 0$ on $S = \{z \in \Omega : \log |z| = \lambda c, \lambda \in \mathbf{R}\}$, if $p_0 = 0$. If (6) holds there is a one-dimensional complex manifold $M = \{(\tau^{c_1}, \cdots, \tau^{c_n}) : \tau \in C\} \cap \Omega$ which is dense in S. Since M is complex, it follows that f = 0 on M. Thus f = 0 on S, and so f = 0 on Ω .

Now we establish the first part of the proposition. Let p_0 , $p_1 \in \partial \omega$ be such that $Lu(p_0) = 0$ and $Lu(p_1) = 1$. Without loss of generality we may assume that $p_1 = -p_0$. We first consider the case where the ratios c_j/c_k are all rational. Thus there are integers (m_1, \dots, m_n) such that $c_j = \mu m_j$ for some $\mu \in R$. The mapping $\mathcal{P}_m(\tau) = (\tau^{m_1}, \dots, \tau^{m_n})$ maps the annulus $A(e^\mu)$ into Ω , and the logarithmic image of $\mathcal{P}(A(e^\mu))$ is the segment (p_0, p_1) . It follows that $u(\mathcal{P})$ and $u^0(\mathcal{P})$ both satisfy (5), and thus by Proposition 1 $u(\mathcal{P}) = u^0(\mathcal{P})$ on A. Since this argument applies to all mappings $\mathcal{P}(\tau) = (e^{i\theta_1}\tau^{m_1}, \dots, e^{i\theta_n}\tau^{m_n})$, we conclude that $u(z) = u^0(z)$ for all z such that $\log |z| \in (p_0, p_1)$.

For general c, we may take a sequence $\{c^s\}$, $c^s = \mu_s(m_1^s, \cdots, m_n^s)$, $\mu_s \in \mathbf{R}$, $m_i^s \in \mathbf{Z}$ such that $\pm c^s \in \bar{\omega}$ and c^s converges to p_1 . As before we set $\varphi_{m^s} = \varphi_s$: $A(e^{\mu_s}) \to \Omega$. Thus

$$u^{\scriptscriptstyle 0}(arphi_s(z)) = rac{\log e^{\mu_s} \, |\, z\, |}{2 \log e^{\mu_s}} + arepsilon(s)$$

where $\varepsilon(s)$ is a function on $A(e^{\mu_s})$ such that

$$\lim_{s\to\infty}||\varepsilon(s)||=0\ \ (\text{here}\ ||\varepsilon(s)||=\sup_{s_{s}\to\infty}|\varepsilon(s)|)\ .$$

If σ is the class of $\{|z|=1\}$ in $A(e^{\mu_s})$ then

$$\int_{eta} d^c u^0(arphi_s) \geqq (1 - ||arepsilon(s)||) N\{\sigma\}$$
 .

Since

$$\int_{(arphi_s)_{*\sigma}} d^{\scriptscriptstyle c} u = \int_{(arphi_s)_{*\sigma}} d^{\scriptscriptstyle c} u^{\scriptscriptstyle 0}$$
 ,

we have

$$\int_{\sigma} d^c u(\varphi_s) \geq (1 - ||\varepsilon(s)||) N\{\sigma\} .$$

By Proposition 1, then,

$$rac{1}{2\pi}\int_0^{2\pi}\left|u(arphi_s(re^{i heta}))-u^{\scriptscriptstyle 0}\!(arphi_s(r))
ight|d heta \leq 4\left|\left|arepsilon(s)
ight|
ight|.$$

Clearly the same holds if φ_s is replaced by $\varphi(\gamma) = (e^{i\theta_1}\tau^{m_1}, \cdots, e^{i\theta_n}\tau^{m_n})$ with $\theta_1, \cdots, \theta_n \in \mathbf{R}$.

Finally we will show that $u(r)=u^{\mathfrak{o}}(r)$ for $r=\lambda c$, $0<\lambda<1$. If this does not hold, then there exists $\delta>0$ such that $|u(z)-u^{\mathfrak{o}}(|z|)|>\delta$ for all z such that $|z-r|<\delta$. Now we may cover the set $T=\{z\in\Omega\colon |z_j|=r_j\}$ with K balls (K large) of radius δ and centers $q_1,\,\cdots,\,q_K\in T$. At least one of these balls has the property that

$$rac{2\pi}{K} \leq ext{measure} \left\{0 < heta < 2\pi
ight: |arphi_s(
ho e^{i heta}) - q_j| < \delta
ight\}$$
 ,

where $\varphi_s(\rho) = r$. Denote Arg (q_i) by (ψ_1, \dots, ψ_n) . It follows that

$$egin{aligned} &\int_0^{2\pi} |\, u(\widetilde{arphi}_s(
ho e^{i heta})) - u^{\scriptscriptstyle 0}(r) \, | \, d heta \ & \geq \delta \ \ ext{measure} \ \left\{0 < heta < 2\pi \colon |\, \widetilde{arphi}_s(
ho e^{i heta}) - r \, | < \delta
ight\} \geqq rac{2\pi\delta}{K} \end{aligned}$$

where $\widetilde{\varphi}_s = (e^{-i\psi_1}\tau^{m_1}, \cdots, e^{-i\psi_n}\tau^{m_n})$. Since this contradicts our previous estimate, we conclude that $u(z) = u^{0}(z)$ if |z| = r, which was what we wanted to prove.

PROPOSITION 3. Let $\omega \subset \mathbb{R}^n$ be a bounded convex set. Given $c \in \mathbb{R}^n$, $c \neq 0$, there exists $u \in \mathbb{F}$, p_0 , $p_1 \in \partial \omega$ such that $p_1 - p_0 = \lambda c$, $\lambda \in \mathbb{R}$, and $Lu(p_j) = j$ for j = 0, 1. Furthermore, there exist $u_1, \dots, u_n \in \mathbb{F}$ satisfying (6) and such that Lu_1, \dots, Lu_n are linearly independent.

Proof. Let us first suppose that $\partial \omega$ is smooth and strictly convex. Let $\alpha: S^{n-1} \to \partial \omega$ be the Gauss map, i.e., the outward normal to $\partial \omega$ at $\alpha(\xi)$ is ξ . Consider the map $\beta: S^{n-1} \to S^{n-1}$ given by

$$\beta(\xi) = \frac{\alpha(\xi) - \alpha(-\xi)}{|\alpha(\xi) - \alpha(-\xi)|}.$$

Clearly $\beta(\xi) \cdot \xi > 0$, and thus β has degree 1, so that β is onto. Let ξ_0 be a vector such that $\beta(\xi_0) = c/|c|$. Then we take $p_1 = \alpha(\xi_0)$, $p_0 = \alpha(-\xi_0)$, and grad $Lu = \beta(\xi)$.

For general ω , we take an increasing sequence $\{\omega_j\}$ of smoothly bounded strictly convex sets. If u^j , p_0^j , p_1^j have the desired properties on ω_j , we pass to a convergent subsequence to obtain u, p_0 , p_1 .

Now we show that we can obtain the family $\{u_1, \dots, u_n\}$. Let us suppose that we have found $\{u_1, \dots, u_j\}$ with $\{Lu_1, \dots, Lu_j\}$,

 $1 \leq j < n$, linearly independent and satisfying (6). Pick $c \in \bigcap_{k \leq j} \operatorname{Ker} Lu_k$, $c \neq 0$. It follows that if u_{j+1} satisfies the conclusion of the first part of the proposition, then $\{Lu_1, \dots, Lu_{j+1}\}$ are linearly independent. Now we perturb c slightly so that (6) is satisfied and the set is still independent.

4. Application to holomorphic mappings. Let $F: \Omega_1 \to \Omega_2$ be a holomorphic mapping of domains satisfying (2). Then by the integer matrix T_F we will denote the map on integral homology classes $F_* = T_F: \mathbb{Z}^n \to \mathbb{Z}^n$ in terms of basis $\{\gamma_1, \dots, \gamma_n\}$. It follows that $T_F(B_1) \subset B_2$ and $T'_F(\Gamma_2) \subset \Gamma_1$, where T'_F is the transpose of T_F , and T'_F gives the action of F^* on H^1 . If $I(\xi) = \sum c_j \xi_j$, then $F^* d^2 \widetilde{I}$ represents the same cohomology class as $T'_F(c)$. Writing $u(z) = \widetilde{I}(F(z))$ we have $Lu(\xi) = T'_F(c) \cdot \xi$.

THEOREM 1. Let Ω_1 , Ω_2 satisfy (2), and assume that $\omega_1 = -\omega_1$, $\omega_2 = -\omega_2$. Let T be an $n \times n$ matrix with integer entries. There exists a holomorphic mapping $F: \Omega_1 \to \Omega_2$ with $T_F = T$ if and only if $T(\omega_1) \subset \omega_2$. Furthermore $T(\omega_1) = \omega_2$ (i.e., F_* is an isometry) if and only if F is a proper covering map, and in this case F has the form

$$F(z) = (e^{i\theta_1}z^{t_1}, e^{i\theta_n}z^{t_n})$$

where $\theta_1, \dots, \theta_n \in \mathbb{R}$ and t_1, \dots, t_n are the rows of T.

Proof. Let $F: \Omega_1 \to \Omega_2$ be given. Since F_* must be norm-decreasing, and since $1/\pi\omega_j = B_j$, it follows that $T(\omega_1) \subset \omega_2$. Conversely, if $T(\omega_1) \subset \omega_2$, we set $F(z_1, \dots, z_n) = (z^{t_1}, \dots, z^{t_n})$. Exponentiating the inclusion $T(\omega_1) \subset \omega_2$, we obtain $F(\Omega_1) \subset \Omega_2$.

Now we assume that T_F is an isometry, and let $\{u_1, \cdots, u_n\} \subset \mathscr{F}^0(\Omega_1)$ be the set constructed in Proposition 3. We may assume that $d^cu_j \in \partial \Gamma$, so there exists $\{\gamma_1, \cdots, \gamma_n\} \subset H_1(\Omega_1, \mathbf{R})$ such that $N\{\gamma_j\} = \int_{\gamma_j} d^cu_j$. Now we pick $u_1', \cdots, u_n' \in \mathscr{F}^0(\Omega_2)$ such that the cohomology class of d^cu_j is the same as $F^*(d^cu_j')$. Thus

$$\int_{\gamma_j} d^c u_j = N\{\gamma_j\} = N\{F_*\gamma_j\} = \int_{\gamma_j} F^*(d^c u_j) \; .$$

Since F is holomorphic,

$$\int_{r_j} F^*(d^e u_j) = \int_{r_j} d^e(u_j'(F)) \ .$$

Since u_j satisfies (6), we conclude by Proposition 2, that $u_j = u'_j(F)$. This gives n independent equations which have the form

$$\sum_{i=1}^n c_{ij} \log |z_i| = \sum_{i=1}^n c'_{ij} \log |F_i(z)|$$

for $j=1, \dots, n$. Thus $\log |F_i(z)| = \sum a_{ij} \log |z_j|$, $i=1, \dots, n$. Since $T_F = T$, it follows that $a_{ij} = t_{ij}$, and so F has the desired form. Thus

$$\frac{\partial F_i}{\partial z_i} = \frac{t_{ij}}{z_i} F_i$$

so that $\det(\partial F_i/\partial z_j) = (\prod_{k=1}^n F_k/z_k) \det T \neq 0$. Since $T(\omega_1) = \omega_2$ it follows that F is in fact a covering map and is proper.

Conversely, we shows that if F is a covering, then F_* is an isometry. We consider first the one-dimensional case $f: A(R_1) \to A(R_2)$, where f is a d-to-1 covering. If $\varphi: A(R_2^{1/d}) \to A(R_2)$ is given by $\varphi(z) = z^d$, then taking a suitable branch of $\varphi^{-1}(f)$ we obtain a biholomorphism between $A(R_1)$ and $A(R_2^{1/d})$. Since $R_1 = R_2^{1/d}$, f_* is an isometry.

For the general case, we consider integral homology classes $\gamma' = \sum m_j \gamma_j' \in H_1(\Omega_2, \mathbb{Z})$. Let $\varphi \colon A' \to \Omega_2$ be an imbedding of an annulus so that $\varphi_*(\sigma) = \gamma'$ and (4) holds. If we set $A = F^{-1}(\varphi A')$, then $F_{|A} \colon A \to \varphi A'$ is a covering. F is proper, so $F^{-1}\gamma'$ is a closed curve in Ω_1 ; thus A is a 1-dimensional annulus and so $(F_{|A})_*$ is an isometry. We let σ be the generator of $H_1(A, \mathbb{Z})$, and we let $\gamma = \gamma_\sigma$ be the induced element of $H_1(\Omega_1, \mathbb{Z})$. Thus $F_*(\gamma) = \gamma'$, and so $N\{\gamma\} \ge N\{\gamma'\}$. On the other hand, since $A \subset \Omega_1$,

$$N\{\gamma'\}=N\{\sigma'\}=N\{\sigma\}\geq N\{\gamma\}$$
 ,

and so $N\{\gamma\} = N\{F_*(\gamma)\}$. Since this holds for all integral classes in $H_1(\Omega_2, \mathbf{R})$, it follows that F_* is an isometry.

THEOREM 2. Let Ω_1 , Ω_2 satisfy (2). If $F: \Omega_1 \to \Omega_2$ is a holomorphic mapping such that $F_*: H_1(\Omega_1, \mathbf{R}) \to H_1(\Omega_2, \mathbf{R})$ is an isometry, then F is a covering map of the form

$$F(z)=(c_1z^{t_1},\,\cdots,\,c_nz^{t_n})$$

where $c_1, \dots, c_n \in C$ and t_1, \dots, t_n are the rows of T_F . In particular, if $\Omega_1 = \Omega_2$ and F_* is nonsingular, then F is a biholomorphism.

Proof. We repeat the appropriate portion of the proof of Theorem 1 and conclude that if F_* is an isometry, then

$$|c_{0j} + \sum\limits_{i=1}^{n} c_{ij} \log |z_i| = c'_{0j} + \sum\limits_{i=1}^{n} c'_{ij} \log |F_i(z)|$$

for $j=1, \dots, n$. Thus $|F_j(z)| = b_j |z_1|^{b_1 j} \dots |z_n|^{b_n j}$, and so F has the desired form since $F_* = T_F$. As before, $\det(\partial F_i/\partial z_j) \neq 0$. To show that F is a covering, we show that F is proper. We have already

shown that $F(z)=(c_1z^{t_1},\cdots,c_nz^{t_n})$ and so for $l'\in\Gamma_2$, $L\tilde{l}'(F)\in\Gamma_1$. We set $U_j(z)=\sup_{l\in\partial\Gamma_j}\tilde{l}(z)$. By the convexity of ω_j , U_j is an exhaustion for Ω_j : $\partial\Omega_j=\{z\in\bar{\Omega}_j\colon U_j(z)=1\}$. As was noted above,

$$T_{\scriptscriptstyle F}'\mathfrak{l}'=\widetilde{\mathfrak{l}}'(\log|F|)$$

for $l' \in \Gamma_2$. Since F_* is an isometry, $F^*\Gamma_2 = \Gamma_1$, and so

$$U_1(z) = U_2(F(z)).$$

Thus F is proper.

In case $\Omega_1=\Omega_2$, then $F_*B_1\subset B_1$. Since T_F has integer coefficients and is invertible, det $T_F=\pm 1$. Thus T_F preserves volume, and so $T_FB_1=B_1$. The inverse mapping is easily constructed as $G(z)=(\zeta^{s_1},\,\cdots,\,\zeta^{s_n})$ where $\zeta_j=z_j/c_j$ and s_j is the jth row of the inverse $S=T^{-1}$.

REMARK 1. It follows that domains satisfying (2) are rigid in the sense of H. Cartan [2]: if $f: \Omega \to \Omega$ is holomorphic and induces a nonsingular mapping on $H_1(\Omega, \mathbf{R})$, then f is an automorphism. By topological considerations, it follows that if f_* is nonzero on the generator of $H_n(\Omega, \mathbf{R})$, then f_* is nonsingular on $H_1(\Omega, \mathbf{R})$ and is thus an automorphism. If T is a complex 1-dimensional torus and if $D \subset C$ is a disk, then $T \times D$ is a complex manifold homeomorphic to $A(R) \times A(R)$ but is not rigid. We would expect, however, that a bounded domain in C^n , homeomorphic to $A(R) \times \cdots \times A(R)$, would be rigid.

REMARK 2. The problem of finding nontrivial automorphisms (i.e., other than $z \to (e^{i\theta_1}z_1, \cdots, e^{i\theta_n}z_n)$) of domain satisfying (2) is thus reduced to finding $T \in GL(n, \mathbb{Z})$ such that TB = B. For instance, if $1 \le p < \infty$, this argument shows that the automorphisms of the domain

$$arOmega = \left\{z \in C^n : \sum_{j=1}^n \left(\log rac{|z_j|}{R_j}
ight)^p < 1
ight\}$$

are generated by the nontrivial automorphisms $z \to (z_1, \dots, z_j^{-1}, \dots, z_n)$ and $z_j \to z_k$ if $R_j = R_k$. Since a "generic" norm on \mathbb{R}^n does not have any nontrivial isometries, a "generic" domain satisfying (2) has only trivial automorphisms.

REMARK 3. Let us consider domains satisfying (7) for some fixed j:

 Ω is connected, bounded, pseudoconvex, Reinhardt, if $z \in \overline{\Omega}$, then $z_1, \dots, z_j \neq 0$, and there are points $P_{j+1}, \dots, P_n \in \overline{\Omega}$ such that the kth coordinate of P_k is 0.

Let $p: \mathbb{C}^n \to \mathbb{C}^j$ be projection onto the first j variables, and set $\Omega_0 = p(\Omega)$. Looking at the logarithmic image of Ω , which is convex, one may deduce that $\Omega_0 \times \{0\} \subseteq \Omega$. By the norm-decreasing property of inclusion $i: \Omega_0 \to \Omega$ and projection $p: \Omega \to \Omega_0$, it follows that i_* and p_* are isometries of H_1 . Thus the norm of a domain satisfying (7) may be computed in terms of Ω_0 , which satisfies (2).

REMARK 4. The following observation extends Proposition 2.

PROPOSITION 4. Let Ω satisfy (2), and assume that for each $p \in \partial \omega$ there is a unique supporting hyperplane at p. Then for each homology class $\gamma \in H_1(\Omega, \mathbf{R})$ there is a unique function $u \in \mathscr{F}^0$ such that $N\{\gamma\} = \int_{\mathbb{T}} d^c u$.

Proof. We show that the $\mathfrak{l}\in\mathscr{L}$ which achieves the supremum in (3) is unique. Suppose, to the contrary, that $\mathfrak{l}_1,\,\mathfrak{l}_2\in\mathscr{L}$ have this property. Then so does $\mathfrak{l}=(\mathfrak{l}_1+\mathfrak{l}_2)/2$. Since \mathfrak{l} is extremal, there must be points $p',\,p''\in\partial\omega$ such that $\mathfrak{l}(p')=0$ and $\mathfrak{l}(p'')=1$. Thus we must have $\mathfrak{l}_1(p'')=\mathfrak{l}_2(p'')=1$, and so the half spaces $\{\xi\colon\mathfrak{l}_1(\xi)\le 1\}$ and $\{\xi\colon\mathfrak{l}_1(\xi)\le 1\}$ both support ω at p''. By assumption, then, \mathfrak{l}_1 is a multiple of \mathfrak{l}_2 . Since $\mathfrak{l}_1(p')=\mathfrak{l}_2(p'')=0$, it follows that $\mathfrak{l}_1=\mathfrak{l}_2$, which completes the proof.

EXAMPLE. If $\Omega = A(R) \times A(R)$, then the homology class $\gamma = \gamma_1 + \gamma_2$ has norm $\pi/\log R$. For $0 \le \lambda \le 1$, the function

$$u_{\lambda} = \frac{1}{\log R} (\lambda \log |z_1| + (1 - \lambda) \log |z_2|)$$

belongs to \mathcal{F}^0 and satisfies (5), and so the extremal function is not unique.

A slight modification of the proof of Proposition 4 shows that uniqueness holds if $\gamma = \sum a_i \gamma_i$ does not have the property:

$$ext{if } t_{\scriptscriptstyle 0} > 0 ext{ is such that } t_{\scriptscriptstyle 0} a \in \partial arGamma \ , \ ext{then there is a segment } I \subset \partial arGamma \ ext{containing } t_{\scriptscriptstyle 0} a ext{ with } I \perp a \ . \$$

Clearly there is a dense subset of H_1 where (8) does not hold.

REFERENCES

^{1.} E. Bedford and D. Burns, Holomorphic mapping of annuli in Cⁿ and the associated extremal function, Ann. Scuola Norm. Sup. Pisa, 3 (1979), 381-414.

^{2.} H. Cartan, Sur les fonctions de plusieurs variables complexes, Math. Z., 35 (1932), 760-773.

- 3. S.-S. Chern, H. Levine, and L. Nirenberg, *Intrinsic norms on a complex manifold*, Global Analysis. Papers in Honor of K. Kodaira. Princeton Univ. Press, 1969, 119-139.
- 4. H. Huber, Ueber analytische Abbildungen von Ringgebieten in Ringgebiete, Compos. Math., 9 (1951), 161-168.
- 5. H. Landau and R. Osserman, On analytic mappings of Riemann surfaces, J. Analyse Math., 7 (1959-60), 249-279.
- 6. M. Schiffer, On the modules of doubly connected domains, Quart. J. Math., 17 (1946), 197-213.

Received April 24, 1978.

PRINCETON UNIVERSITY PRINCETON, NJ 08544

Pacific Journal of Mathematics

Vol. 87, No. 2

February, 1980

Theagenis Abatzoglou, Unique best approximation from a C^2 -manifold in	
Hilbert space	233
Gerald Arthur Anderson, Λ -homology cobordism bundles	245
Eric Bedford, Holomorphic mapping of products of annuli in \mathbb{C}^n	271
Gunnar Carlsson, On the stable splitting of bo \land bo and torsion operations	
in connective K-theory	283
Lester Eli Dubins and David Samuel McIntyre Margolies, Naturally	
integrable functions	299
Leo Egghe, The Radon-Nikodým property, σ-dentability and martingales in	
locally convex spaces	313
Irving Leonard Glicksberg, Maps preserving translates of a function	323
Hugh M. Hilden and Robert D. Little, Cobordism of branched covering	
spaces	335
Russell Allan Johnson, Almost-periodic functions with unbounded	
integral	347
Bruce Stephen Lund, The endomorphisms of a Dirichlet algebra	363
John Henry McCleary, Mod p decompositions of H-spaces; another	
approach	373
Arlan Bruce Ramsay, Subobjects of virtual groups	389
Thomas R. Savage, Generalized inverses in regular rings.	455
Jaak Vilms, On curvature operators of bounded rank	467