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Let 2,92, C* be bounded pseudoconvex Reinhardt
domains with the property that z,:--2z,7%0 for all
(24 -+, 2,) €2;. A holomorphic mapping f: 2, - 2, is discuss-
ed in terms of the induced mapping on homology fi:
H,(Q2,R)— H(2,,R). Specifically, there is a norm on
H,(2;, R) which must decrease under f:. As a consequence
we prove that a domain 2 as above is rigid in the sense of
H. Cartan: if f:2— 2 is holomorphic and fi: H,(2,R) —
H,(2, R) is nonsingular, then f is an automorphism.

1. Introduction. Let A(R;) ={2€C:1/R; <|z| < R;} be an
annulus in the complex plane. If f: A(R,) — A(R,) is a holomorphic
mapping, then the topological behavior of f is restricted in terms
of the moduli R, and R, (see Schiffer [6] and Huber [4]). With the
methods of Landau and Osserman [5] it will be possible to generalize
this result to certain domains which are (topologically) the products
of plane annuli. Domains satisfying (2) are also shown to be rigid;
see Theorem 2 and Remark 1. In [1] the homology group H,, , was
used to prove rigidity; here we discuss H,.

Let 2 cC™ be a complex manifold and let

F = {uecC¥2), 0 <u <1, w pluriharmonic} .

If ye H(2, R) is a homology class, then a seminorm on v may be
defined by

(1) N{v} = sup Srdm

where d° = i(0 — 3), (see Chern, Levine, and Nirenberg [2]). If
F. 2, — 2, is a holomorphic mapping, then the map on homology
F,: H(2, R) — H(2, R) must decrease this norm.

2. Computation of the intrinsic norm. We will compute this
norm for domains Q2 C C* satisfying

L2 is connected, bounded, pseudoconvex, Reinhardt (i.e.,
(2) (ez, -+, e%2z,)c R if ze2 and 4, ---,0,€R), and if
z€Q, then z, --- 2, # 0.
Let @ C R* be the logarithmic image of 2, i.e.,
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0 = {(éb ) én)eRn: (efl’ Tty efn)e‘Q} .

Since 2 satisfies (2), @ is convex. Choosing a point { € 2, we define
v;€ H(2, R) to be the homology class of the circle 6 — (, ---,
e, ---,¢,),0=6 < 2r. Thus {7, ---,v,} forms a basis for H,(2, R).
For u e &, we set

2n 2
uo(rrl’ e Irn) — 1 S e S u(frlewl, cee 7'”3“77;) . d01 .« dﬁ” .
(2m)™ Jo 0

Since d° is linear and invariant under complex rotations,
S d'u =S d'u’
75 7

for all ue #. Let F°'={ue s uw=ul, - --,r,)}. We note that
every element of % ° has the formu =¢ + ¢,log», + --- + ¢, log r,.
For u’ € %, the function I(§,, ---, &) = u’(e®, -- -, ¢») is affine (linear
plus constant). A simple computation gives

S du’ = S ou r;d0; = or 9L
i i

or; 0&;

Thus we conclude that

Niayv, + -+ +a,;7,,}=277:§u£9<a1ﬁ1_+ it a 31)

06, " o8,
where
P(w) = {[(&) affine: 0 < (&) <1, tew}.
We define the norm
1] = mgx[ — n}_”inl
so that & is identified via the map I —1 — [(0) with I = {{ linear:
Il £1}. Clearly I'= —I" and I" is convex. Let R} denote the

Banach space R* with I" as its unit ball. By (38) the unit ball B of
H,(2, R) is

r ol
240 08;

B = {'7 = j}:}la,ﬁ/j:

1
— for I; ||I 1
< 5 for i <1

which is 1/27 times the unit ball of (R})'.

If w = —w, then (R’ = R%, and thus B is naturally identified
in R as B= (1/r)w. If w is any convex set, then the convex set
@=nwBCR" satisfies @=—@& and has the same unit ball, B, as . For
a general convex set w, we may assume that 0 e w and let p(&) be
its support function, i.e., p(¢) is the distance from 0 of the hyper-
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plane which supports @ and has outward normal & It follows that

_ . . 2\1/2 1
I = {I(E) = 20154- (Z C,) é (p(C) + p(_c))} :

In terms of the basis {d64,, ---, d8,}, I' may be identified as a subset

of HY2, R), and so H' inherits the dual norm. Thus, for each a ¢

HY R, R) with a € oI', there exists v € H,(2, R) such that v.a = N{v}.
For we #, lel’, we will use the notation:

Lu(¢) = w'(e)
[(z) = I(log | 2]) .

It is useful to know, given a homology class v € H(2, Z), whether
there is an imbedded annulus ¢: A(R) — 2 such that @, (|z] =1) =~
and N{|z| = 1} = N{v}. We do not know this in general, but this
happens when w = —®. For integers m,, ---, m,, we define the map
@: A(R) — C" by @(t) = (z™, -+, "), and thus @,(|z| =1) = >, m;v,.
It is easily seen that p(A(R))C 2 for log R = g if (um,, - --, pm,) e w.
By the identification B = (1/7)w, we have

(4) N(o) = —Z- = Nip.(0)} = N(Z my7;}
for ¢t =log R and p(m,, ---, m,) € 00.

3. Extremal functions. To study holomorphic mappings we
will need to know that the function achieving the supremum in (1)
is unique.

PROPOSITION 1. If v is the homology class of {|z| = 1} in the
annulus A(R), then

_ log R|z|

%
2log R

ts the unique function in F satisfying
(5) Ny} = Srd“w .
If ve F satisfies

N = | @
then

1 S”’ |o(re’) — u(r)|df < 4(1 — ¢)
2 Jo
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Sfor 1/R < r < R.

Proof. The first assertion is well known. The idea of the proof
is that if ve &, and if {u > v} is nonempty, then the homology
class of v' = o{u > v} is homologous to v. Thus if » satisfies (5),
then

ST d(u — v) = ST, @ —v)=0.

Thus V(u — v) = 0 on 7, and by unique continuation, v = v on A(R).
For details, see Landau and Osserman [5], or [1].
For the second assertion, we consider the Laurent expansion

v(z) = cu(z) + ¢, + Re g(z)

where ¢(z) = 3. ¢;7°. Since Re g(z) is a bounded harmonic function
on A(R), it has nontangential boundary limits a.e. on [2| = R and
|z| = 1/R. It follows that

r Re g(re?)dd = 0

for 1/R<r<R. Since ve.#, it follows that ¢, +¢ =<1 and
Reg(z) £1—¢ —¢, for |z| = R; and ¢, = 0, Reg(z) = —¢, for |z| =
1/R. Therefore

1 S IRe g(re")|do < 2(1 — o)
21 Jo

for » = R and r = 1/R. Since Re ¢ is harmonic on A(R), this bound
holds for 1/R < » < R. Thus

LSTW(T) — v@e?)|d0 <1 — ¢ + ¢, + 21

or
6
- S S |Re g(e*%)| do

which gives the desired estimate.

PROPOSITION 2. Let 2 satisfy (2), and let v<€ H(2, R) be given.
If u satisfies (5), then w(z) = u’z) for all 2€ 2 such that log |z|
belongs to the convex hull of {&€ € 0w: Lu(g) = 0 or 1}. In particular,

f
there exist
D, P.E€®, Lu(p,) =1, Lu(p,) =0
(6) c=1(¢, -+, ¢, =D — D, and the
set {c, ---, c.} 18 rationally
independent
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then u(z) = u’(z) for all ze L.

Proof. Let us begin by recalling that Srd°(u° —u) =0 for all

ve H(2, R). Thus there is a holomorphic functionf € £°(2) such that
u = u* 4+ Ref. If the first part of the proposition is proved, then
it follows that Re f(2) =0 on S={zc2:log|z| = A¢, A€ R}, if p,= 0.
If (6) holds there is a one-dimensional complex manifold M =
{(z°1, -+, 7»): 7€ C} N 2 which is dense in S. Since M is complex,
it follows that f =0 on M. Thus f=0on S, and so f =0 on Q.

Now we establish the first part of the proposition. Let p, », ¢
6w be such that Lu(p,) = 0 and Lu(p,) = 1. Without loss of generality
we may assume that p, = —p,. We first consider the case where
the ratios ¢;/c, are all rational. Thus there are integers (m,, ---, m,)
such that ¢; = ym; for some gt R. The mapping @,(7) = (t™, - .., t™)
maps the annulus A(e*) into 2, and the logarithmic image of @(A4(e*))
is the segment (p,, p). It follows that u(®) and u°(®) both satisfy
(5), and thus by Proposition 1 u(®) = u°(®) on A. Since this argu-

ment applies to all mappings @(z) = (e““c™, ..., ¢%»z™), we conclude
that u(z) = u°(z) for all z such that log|z| € (p, ».
For general ¢, we may take a sequence {c¢*}, ¢* = ¢, (m;, -- -, ms),

U, eR, micZ such that *c*c® and ¢’ converges to p,. As before
we set @, = @,: Ale*s) — 2. Thus

Hs
W) = LA 1 o

where &(s) is a function on A(e*s) such that

£{rg||e(8>ll = 0 (here [|e(s)|| = sup [&(s)]) .

AceHs)

If o is the class of {|z] = 1} in A(e*) then
|, dwe) = @ — e DNio}
Sinece

S d'u = S du’,
(P5)na (0y)xa

we have
Ld”u(fi’s) = (1 — |le(s) [N N{o}

By Proposition 1, then,



276 ERIC BEDFORD

2r

"t o) — w)do = 4)156)]] -

21 Jo

Clearly the same holds if @, is replaced by @(v) = (e“z™, ..., e'l»z™n)
with 6,, ---, 6, R.

Finally we will show that u(») = «°(») for » = x¢, 0 <N < 1. If
this does not hold, then there exists 8 > 0 such that ju(z) — u°(Jz])| > o
for all z such that |z — | < 4. Now we may cover the set T =
{#z€:|z;| = r;} with K balls (K large) of radius 0 and centers
g, --+,9x€T. At least one of these balls has the property that

.2% =< measure {0 < § < 27: |p,(pe") — q;] < 6},
where @,(0) = . Denote Arg (q;) by (4, -, v). It follows that

| 1u@oe) — wirdo

27o

= 6 measure {0 < ¢ < 2m: | $,(0e") — r| < 8} =

where ¢, = (e""Wigz™, ... ¢ “Wng™s),  Since this contradicts our previ-
ous estimate, we conclude that u(z) = ') if |z] = », which was
what we wanted to prove.

PROPOSITION 3. Let w C R" be a bounded convex set. Given
ceR*, ¢ =0, there exists we€ ., D, P.€0w such that p, — p, = \¢,
NeR, and Lu(p;) =7 for j=0,1. Furthermore, there exist
Uy * 0, Uy €F  satisfying (6) and such that Lu,, - - -, Lu, are linearly
independent.

Proof. Let us first suppose that dw is smooth and strictly con-
vex. Let a:S"'— 0w be the Gauss map, i.e., the outward normal
to ow at «a(g) is & Consider the map B: 8" — S** given by

o ) —a(=8)
B8 = e —al=o)]

Clearly B(¢)-£ > 0, and thus 8 has degree 1, so that 8 is onto. Let
& be a vector such that B(&) = ¢/l¢|. Then we take p, = a(g), », =
a(—§&), and grad Lu = B(&).

For general w, we take an increasing sequence {®;} of smoothly
bounded strictly convex sets. If u?, p!, »{ have the desired proper-
ties on w;, we pass to a convergent subsequence to obtain u, p, ..

Now we show that we can obtain the family {u,, ---,u,}. Let
us suppose that we have found {u,, ---,u;} with {Lu,, ---, Lu},
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1< 7 <mn, linearly independent and satisfying (6). Pick cc
MNs=; Ker Luy, ¢ # 0. It follows that if u;., satisfies the conclusion
of the first part of the proposition, then {Lu,, .-, Lu;+,} are linearly
independent. Now we perturb ¢ slightly so that (6) is satisfied and
the set is still independent.

4. Application to holomorphic mappings. Let F: 2, — 2, be
a holomorphic mapping of domains satisfying (2). Then by the
integer matrix T, we will denote the map on integral homology
classes F, = T;: Z* — Z" in terms of basis {7, ---,7v.}. It follows
that Tw(B) < B, and Tr(I,) cI',, where T}, is the transpose of T,,
and T, gives the action of F* on H'. If I(&) = 3 ¢;&;, then F*dl
represents the same cohomology class as Th(c). Writing u(z) = [(F(z))
we have Lu(§) = Tr(c) - &.

THEOREM 1. Let 2,, 2, satisfy (2), and assume that @, = —w,,
w,= —®, Let T be an n X n matrix with integer entries. There
exists a holomorphic mapping F: 2, — 2, with T, = T if and only
if T(w,) Cw,. Furthermore T(w,) = w, (i.e., F, is an isometry) if
and only if F is a proper covering map, and in this case F has
the form

F(z) = (012", ¢'ingin)

where 6, --+, 0, <R and t, ---,t, are the rows of T.

Proof. Let F:Q,— 2, be given. Since F, must be norm-
decreasing, and since 1/mw; = B;, it follows that T(w, C ®,. Con-
versely, if T(w)Cw, we set F(z, ---, 2,) = (&%, ---, 2!»). Ex-
ponentiating the inclusion T(w,) C w,, we obtain F(Q,) C 2,.

Now we assume that TF‘ is an isometry, and let {u, ---, u,} C
F%R2,) be the set constructed in Proposition 3. We may assume
that du;eol’, so there exists {v, ---, 7.} C H(2, R) such that
N{v;} = Sr_dcuj. Now we pick u;, ---, ur,€.% °(2,) such that the

cohomologly class of d°u; is the same as F*(d'u;). Thus
|, au = Novp = NFi = | o).
Since F' is holomorphic,
|, ) = | am .

Since u; satisfies (6), we conclude by Proposition 2, that u; =
ui{F). This gives n independent equations which have the form
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Souloglzl = 3, cislog | Fi(2)]

forj=1, ..., n. Thuslog|F,(z)] =X a;log|z;|l,i=1, ---, n. Since
» = T, it follows that a,; =¢;, and so F has the desired form.
Thus
OF, _ tup
0z; z;

so that det (0F,/0z;) = (IIj-. Fi/z)det T = 0. Since T(w) = @, it
follows that F is in fact a covering map and is proper.

Conversely, we shows that if F'is a covering, then F, is an isometry.
We consider first the one-dimensional case f: A(R,) — A(R,), where f
is a d-to-1 covering. If ¢: A(RY*) — A(R,) is given by @(z) = 2%, then
taking a suitable branch of @7*(f) we obtain a biholomorphism
between A(R;) and A(RyY?). Since R, = RY¢, f, is an isometry.

For the general case, we consider integral homology -classes
v =S \myy;e H(2,, Z). Let @o: A'— 02, be an imbedding of an
annulus so that @,(0) =+ and (4) holds. If we set A = F @A),
then F|: A —> @A’ is a covering. F is proper, so F~'v' is a closed
curve in 2,; thus A is a 1-dimensional annulus and so (F\,), is an
isometry. We let o be the generator of H,(4, Z), and we let v = v,
be the induced element of H,(2,, Z). Thus F.(v) = 7', and so N{v} =
N{v'}. On the other hand, since A < 2,

N{v'} = N{o'} = N{o} = N{v},
and so N{v} = N{F,(v)}. Since this holds for all integral classes in
H(2,, R), it follows that F, is an isometry.

THEOREM 2. Let Q,, 2, satisfy (2). If F: 2, — 2, is a holomor-
phic mapping such that F.: H(Q, R)— H,(2, R) is an isometry,
then F 1s a covering map of the form

F(z> = (clztlf tt c'nztn>
where ¢y, -+, ¢, €Cand t,, «--,t, are the rows of Tr. In particular,

if 2, =82, and F, is nonsingular, then F is a biholomiorphism.

Proof. We repeat the appropriate portion of the proof of
Theorem 1 and conclude that if F, is an isometry, then

Coj T lecifl()g]zil = C<’>j + éc’;jIOg}Fi(z)l
forj=1,---,n. Thus |F;2)]|=b;|2]|% ---|2,|, and so F has the

desired form since F, = T,. As before, det (0F;/0z;) # 0. To show
that F is a covering, we show that F is proper. We have already
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shown that F(z) = (2%, ---, ¢,2'*) and so for V'el, L'(F)el,, We
set Uj;(z) = suple,pif(z). By the convexity of w;, U; is an exhaus-
tion for 2,:02; = {ze 2;: Uj(z) = 1}. As was noted above,

T,! = I'(log [ ')
for 'el’,. Since F, is an isometry, F*I', = I',, and so
U.(z) = U(F(2)) .

Thus F' is proper.

In case 2, = 2,, then F,B,C B,. Since T, has integer coefficients
and is invertible, det 7, = +1. Thus 7T, preserves volume, and so
TyB, = B,. The inverse mapping is easily constructed as G(z) =
(¢, ---, ") where {; = z;/c; and s; is the jth row of the inverse
S=1T"

ReEMARK 1. It follows that domains satisfying (2) are rigid in
the sense of H. Cartan [2]: if f: 2 — 2 is holomorphic and induces
a nonsingular mapping on H,(2, R), then f is an automorphism. By
topological considerations, it follows that if f, is nonzero on the
generator of H,(2, R), then f, is nongingular on H,(2, R) and is thus
an automorphism. If 7 is a complex l-dimensional torus and if
DcCis a disk, then T x D is a complex manifold homeomorphie
to A(R) X A(R) but is not rigid. We would expect, however, that
a bounded domain in C”, homeomorphic to A(R) x --- x A(R), would
be rigid.

REMARK 2. The problem of finding nontrivial automorphisms
(i.e., other than z — (¢'1z,, ---, ¢'#z,)) of domain satisfying (2) is thus
reduced to finding T e GL(n, Z) such that TB = B. For instance, if
1<p< oo, this argument shows that the automorphisms of the domain

Q — . “ Izii ?
= {zec: 3 (log 1 2) < )
j=1 Rj
are generated by the nontrivial automorphisms z — (2, - - -, 27, - -+, 2,)
and z; — 2, if R; = R,. Since a “generic” norm on R" does not have
any nontrivial isometries, a “generic” domain satisfying (2) has only
trivial automorphisms.

REMARK 3. Let us consider domains satisfying (7) for some
fixed 7:

2 is connected, bounded, pseudoconvex, Reinhardt, if z¢ 2,
(1) then z, ---,2;,# 0, and there are points P, ---, P,eQ
such that the kth coordinate of P, is 0.
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Let p: C*— 7 be projection onto the first 7 variables, and set 2, =
p(2). Looking at the logarithmic image of 2, which is convex, one
may deduce that 2, x {0} & 2. By the norm-decreasing property of
inclusion i: 2, — 2 and projection p: 2 — 2,, it follows that 7, and
P, are isometries of H,. Thus the norm of a domain satisfying (7)
may be computed in terms of 2,, which satisfies (2).

REMARK 4. The following observation extends Proposition 2.

PROPOSITION 4. Let 2 satisfy (2), and assume that for each
pEow there 1s a unique supporting hyperplane at p. Then for
each homology class ve H(Q, R) there is a unique function €. .7 °

such that N{v} = g d°u.

Proof. We show that the [ € & which achieves the supremum
in (3) is unique. Suppose, to the contrary, that [, |,e€.%” have this
property. Then so does [ = (I; + 1,)/2. Since [ is extremal, there
must be points p’, p"" €6w such that [(p’) =0 and I(p”) = 1. Thus
we must have L(9p"”) = L(p"”) = 1, and so the half spaces {&: (&) =< 1}
and {&:,(&) £ 1} both support w at p”. By assumption, then, |, is a
multiple of 1,. Since [(p') = L(»") = 0, it follows that I, = ,, which
completes the proof.

ExampLE. If Q = A(R) x A(R), then the homology class v =
v, + 7. has norm 7/log R. For 0 <) £ 1, the function

_1

Tog R(h log [z] + (1 — \) log |2,])

U, =
belongs to #° and satisfies (5), and so the extremal function is not
unique.

A slight modification of the proof of Proposition 4 shows that
uniqueness holds if v = 3 a;v; does not have the property:

if t,> 0 is such that t,acol,
(8) then there is a segment ICol’
containing t,a with I L a .

Clearly there is a dense subset of H, where (8) does not hold.
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