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ON CURVATURE OPERATORS OF BOUNDED RANK
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A curvature operator, that is, a linear map R: A2 V->
Λ2V9 has bounded rank 2r if it maps simple bivectors into
bivectors of rank ^=2r. It is shown here that this condition
is equivalent to the following:

Σ Rix^ΛyjΛ AR(xir+1Ayr+ί)=0

for all xu , α?r+1, ylt ',yr+ι in V, with the sum taken over
all permutations (ilt , ir+1) of (1,2,3, •• , r + l ) . An appli-
cation to Riemannian geometry is given.

1* Introduction • The Riemann curvature tensor has been
studied in many different algebraic contexts. In particular, it can
be formulated as a linear map R: A2 V —> A2 V, called the curvature
operator, where V is a real ^-dimensional vector space and A2V is
its associated space of bivectors.

The concept of bivector rank is reviewed in § 2. Our main
result appears as Theorem 3.4 in § 3. The application to Riemannian
geometry is given in §4. The reader is referred to [1] and [2] for
background material in exterior algebra.

The author wishes to thank Professor Marvin Marcus for supply-
ing an elegant proof for Theorem 3.4.

2* The rank of a bivector. The bivector space A2V is isomorphic
to the space o(V) of linear maps V—> V which are skew-symmetric
with respect to any fixed inner product on V. Namely, choose a
basis el9 , en of V. Then for arbitrary a$Λ2V we have a —
Σcf'βi A ejf where the sum is taken either over 1 <; i < j <; n, or
over i, j = 1, , n with the understanding that aβi = —aίj (and the
aij are divided by 2). The linear map A: V~^ V defined by Aβi =
Σcf'βj is skew-symmetric with respect to any inner product for
which the basis eu -- ,en is orthonormal. It is easy to check that
if a different basis is chosen, the range of A still stays the same;
hence, Ua — A{V) is a uniquely defined subspace of V associated to
a. The rank of a is simply the rank of such a corresponding linear
m a p i e o ( F ) , i.e., rank (a) = dim Ua.

Note rank (a) = 0 means a = 0. Bivectors of minimal nonzero
rank, that is, of rank 2, are called simple or decomposable.

We shall need some equivalent definitions of the rank of a,
expressed in the context of Λ2V rather than o(V). These facts are
summarized as follows.
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PROPOSITION 2.1. Let aeΛ2V, a ΦQ.
(a) Rank (a) = 2r if and only if there exist independent

vectors xu , x2r such that

a = x1 A x2 + + x2r-i A Xor

(b) Rank (a) = 2r if and only ifarΦθ and ar+1 = 0.
(c) The rank of a is the smallest dimension of any subspace

UczV such that Λ2U contains a.
(d) The rank of a is twice the smallest number of terms in

any expression of a as a sum of simple bivectors.

Proof.
(a) Write a = Σauet A ed, with the sum taken over 1 <̂  i < j<^

n. Since a Φ 0 by hypothesis, some aίj must be nonzero; hence the
basis vectors et can be relabeled to obtain a12 Φ 0. Set

au

Then the expression a = Σ aί3'eι A eό can be rewritten as

= xx A x2 + ΣΣ -^
^i<j a

^ τ ( α Λ α)1 2 i^, Λ
i α 1 2

= a?i Λ x2 + «i

Note that xu x29 e3, , en are linearly independent and that αx e
#{e3, , ew} (brackets {• •} denote span).

Now an induction can be performed. If ax — 0, we are done.
If αx Φ 0, relabel the et for 3 ^ i to make af Φ 0. The above pro-
cedure is then repreated on ax to get

ΣΣ -ir(αi Λ aju'ei A
a
ia

= 3̂ Λ ^ + a2 .

Thus α = x1 A x2 + α?3 Λ x± + «2> with xu , &4, eβ, , eΛ linearly
independent, and a2eΛ2{e5, * ,β%}. Eventually, one of the ak's is
zero, since we run out of e/s to operate on. Hence a = xx A
x2 + + ^2r-i Λ x2r, for some 2r. Since the vectors xlt , x2r are
independent, 2r ^ n.

Note that α e Λ2{xu , ^2r}. Moreover, if we extend a?lf , x2r
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to a basis of V, then in this basis the coordinates of a are given
by α12 = α34 - α56 = - 1, α21 - α43 - α65 - - - - - 1 , all other α* =
0. Hence for this basis the vectors Aet are given by Aeik^x = :e2Jfe,
-Aβ2Jfe= — flc2*-i It follows that I7β={ίc2, —xux49 —xz, * ,#2r, — #2r-i} =
{a?i, , x2r}t and therefore rank (a) = 2r. This proves (a).

(b) The power ar stands for the exterior product α Λ Λ α
where α occurs r times. Let us substitute the "canonical" expan-
sion given in part (a), a = x1 A x2 + + £2r-i Λ #2r> into this
product; notice that it has exactly r summands. Since x A x = 0,
the nonzero terms of the product ar are obtained by choosing a
different summand x2ί_x A x2i from each a and multiplying these
together. Since the exterior product of bivectors is commutative,
each of these terms equals #χ Λ #2 Λ Λ x2r-i Λ #2r Now there
are r ! of these terms, since a typical term can be built up in r\
different ways. Therefore ar — r\ ^ A Λ x2r) Since the xt are
independent, we see that ar Φ 0; and also ar+1 = 0, since each term
of the product ar A ex contains a factor of form x A x.

On the other hand, suppose a8 Φ 0, a*+1 — 0, and let rank a =2?\
Then the above argument gives ar Φ 0, α r + 1 = 0. If s < r, then
s + 1 ^ r, so α 8 + 1 = 0 contradicts ar Φ 0; and if r < s, then r + l ^ s ,
so α r + 1 = 0 contradicts as = 0. Therefore only s = r is possible.
This proves (b).

(c) Let s be the smallest dimension of any subspace U a V
such that aeΛ2U. Let eu , ek be a basis of Ua such that ^, ,
en is a basis of V. Hence each Ae, = Σ α ί i ey ^s a linear combination
of βx, , ek only, so that no nonzero term with ej9 j > k, appears
in these sums. Since aji = — aij, this means that the coefficients ai3'
which involve ί, j > k must all vanish. Therefore the expression
« — Σ α i i e i Λ βy reduces to a sum over i, i = 1, •••,&, whence α 6
Λ2Ua. This implies s ^ fe.

Conversely, by definition of s, there is a basis blf , 62, δ s + 1, ,
6Λ of V such that α = Σ ^ 6 * Λ 63 , summed over 1 ^ i < j ^ s.
Taking this as a sum over all i, j = 1, , n, we see that xiS = 0
for i, i > s. Hence for this basis we have Aet — Σ xίjb3-, summed
over 1 ^ j ^ s, which implies that Z7α c {6̂  , b8}. Therefore k<^s,
and thus k = s. This proves (c).

(d) By (a), a simple bivector is of form x1 A x2- The required
statement follows directly from (a) and (c).

COROLLARY 2.2.

(a) A bivector a is simple if and only if a A a — 0.

(b) If a = Σ aijVί Λ Vj, iy j ^ p, then rank (a) <̂  p; and if the
yt are linearly dependent, then rank (a) < 0.

(c) I / α = j / i Λ » 2 + l l l + V2r~i Λ #2r> tfcβw rαwfc (a) is = 2r or
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is <2r as the yt are linearly independent or dependent.

Proof, Part (a) is clear. For (b), note aeΛ2Uy where Uy —
{Vu " ,yP}- Now rank (a) <; dim Uy by Proposition 2.1 (c). If the
yt are dependent, dim Uy < p. Hence rank (a) < p. For (c) note
that if yt are dependent, then rank (a) < 2r by (b). On the other
hand, if the yi are independent, then rank (a) = 2r by Proposition
2.1 (a).

3* Curvature operators of bounded rank* The space Λ2V is
a disjoint union of the subsets of bivectors of the different possible
ranks 2, 4, , 2[n/2], We wish to consider how a curvature operator
R: Λ2V-* Λ2V maps the simple bivectors.

The image of a simple bivector is a bivector having a certain
rank. At worst, this rank is 2[n/2] — n — 1 or n (as n is odd or
even), but it could be a smaller number. Let us say that a curva-
ture operator R has bounded rank 2r if the image of each simple
bivector has rank <̂  2r. This means that the range R(A2V) is con-
tained in the union of the sets of vectors of ranks 2, 4, , 2r. Our
purpose here is to give a characterization for curvature operators
R of bounded rank2r.

Curvature operators of bounded rank 2 are those that map simple
bivectors into simple bivectors, or in other words, preserve decom-
posability; they were studied in [3] and [4]. We first state some
results concerning this special case.

PROPOSITION 3.1. // a curvature operator R has bounded rank
2, then it maps bivectors of rank 2r into bivectors of rank ^ 2r, for
all r.

Proof. Consider a bivector a of rank 2r. By Proposition 2.1
(a) it can be written as a = xt A x2 + * * + x2r-x Λ x2r- Since R is
linear, Ra = R(x1 A x2) + + i2(&2r-i Λ α2r). But each of these
terms is a simple bivector; hence Ra — yt A y2 + + y2r-i Λ y2r

for suitable ylf"'9y2r^V. Now Corollary 2.2 implies that rank
(Ra) ^ 2r.

THEOREM 3.2. [4, Prop. 3.1]. A curvature operator R has
bounded rank 2 if and only if R(x± A x2) A R(x3 A α?4) + R{xx A xz) A
R(x2 A x4) = 0 for all xlf x2, x3, x4 e V.

THEOREM 3.3. [3, Thm. 1]. Let V have an inner product, suppose
the curvature operator R is symmetric in the induced inner pro-
duct on Λ2V and is nonsingular, and let n >̂ 5. Then R has
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bounded rank 2 if and only ifR — ±Λ2L for some linear map L:
V-* V.

Now we return to the general case and state our main theorem,
which is a generalization of Theorem 3.2. Let Sr denote the sym-
metric group on r objects.

THEOREM 3.4. A curvature operator R has bounded rank2r if
and only if

( 1 ) Σ Λ(&σ<iϊ Λ ϊ M Λ R(Xoir+D A y r + 1) - 0 ,
σesr+1

for all xu , xr+1, yl9 , yr+1 e V.

Proof. [Marvin Marcus]. By definition, R has bounded rank2r
if and only if R(x A y) has rank ^ 2r for every x, y e V. By Pro-
position 2.1 (b), this occurs if and only if (R(x A y))r+1 = 0 for all
x, y e V. But this in turn occurs if and only if

[ / r+l

i2(ΣλΛ

for all xlf , a;r+1> yl9 -, y r + 1 e F and all real λx, , λr+1, μl9 , ̂ r + 1.
The left side of (1) can be considered as an Λ2{r+1) V-valued

polynomial in the indeterminates Xu , λr+1, μlf , μr+ι. Upon
expanding and collecting terms, we find that the coefficient of
\ * #Vfi/V m\+i is precisely the left side of equation (1). But if a
polynomial is identically zero, then all its coefficients must vanish.
Therefore R(x A y)r+1 = 0 for all xf y e V implies (1).

On the other hand, if (1) holds for all xlf , xr+1, ylf , yr+1,
then we can put xλ = = xr+1 = x and yί = = y r + 1 = ?/, to get
R{x A y)r+1 = 0 for all x,yeV.

Theorem 3.4 can be restated in terms of a basis eu , en of V.
Let JB(β£ Λ e,-) = RiS. Then

Λ(* Λ y) = Σ » V % Λ ej) = Σ Λ'^ΛU ,

since both J2 and the exterior product are linear in their arguments.
Note that the Riά are the columns of the matrix of R in terms of
basis e< Λ eό, i < j , of Λ2V.

THEOREM 3.5. A curvature operator R has bounded rank2r if
and only if

Σ Rta{1 ^ Λ ' Λ Rta^Diri! = 0 »
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for all 1 <; iv, j \ ^ n.

Proof.

A ' Λ -B(«air+1) Λ 1/r+l)

Now a^ί+ϊ^ a£<ί)) = ^*ι "»r+iι Hence this sum can be rewritten as

V CR Λ . . . Λ 7? Yr*1. . . T ^ + W 1 . . .i/jr+1

i i ' .. JV

Now this sum is zero for all xl", y[v if and only if the coefficients

ΣoRίσU)h Λ ••• Λ Rialr+1)ir+ί are identically zero.

COROLLARY 3.6. A curvature operator R has an image bivector
of rank > 2r if and only if there exist integers 1 ^ iu , ir+ly

3u ''', Jr+i ^ ^ such that

Σ Riσu)h Λ Λ ^ίσ ( r + 1)i r + 1 ^ 0 .

4. An application. Let Mn be an ^-dimensional Riemannian
manifold and let V denote the tangent space at any point p of Mn.
If Mn admits local isometric embedding of a neighborhood of p into
Euclidean space En+r, then the curvature operator R at p decom-
poses into a sum R — Λ2LX + + Λ2Lr, where the maps L^: V-+V
are the second fundamental form operators. Hence R(x Λ y) =
Lλ(x) A Lx{y) + + Lr(x) A Lr(y) for each x, y e V, which implies
that each R(x A y) has rank <; 2r (by Proposition 2.1 (d)). Hence
we get the following results, which are relevant for r ^ [n/2].

LEMMA 4.1. // the neighborhood of a point in a Riemannian
manifold Mn admits isometric embedding into En+r, then the
curvature operator at that point has bounded rank2r.

THEOREM 4.2. Let Mn be a Riemannian manifold, and set
Rtj — 1/2 Σfc.z Rfύek A eh where Rf5 is the curvature tensor and
el9 - -, en is a basis of the tangent space at a point of Mn. If
there exists a point in Mn where

Σ Λ<#(1)iιΛ ••• ARiσ{r+1)dr+1Φ0
SσeSr+1

for some integers 1 ^ iu , ir+1, j l f , j r + 1 ̂  n, then Mn cannot
be isometrically immersed in En+r.
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