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This paper develops a unified theory of function spaces
Mj^(Y, Z) with set-open topologies, the sets in question being
the continuous images of selected classes of topological
spaces - ^ We prove that at least five of these function
spaces are distinct and have corresponding exponential
homeomorphisms θ: M^ (X, MSΛY, Z)) ~ M^ (X XS/Y, Z) for
suitably retopologized product spaces I X y F , Singleton
spaces are normally identities with respect to these products
and so we have determined four distinct monoidal closed
structures for the category of all spaces. Conditions for the
category of spaces generated by sf, i.e., the coreflective hull
of J^, to be cartesian closed and/or convenient are given.
One result asserts that the category of sequential spaces is
the smallest convenient category.

R. Brown proved in [4, p. 240, Corollary 1.8] that there is an
exponential homeomorphism for the category HAUS of all Hausdorff
spaces, relating function spaces with the compact-open topology to
a retopologized product XXSY without any further restrictions on
X and Y. This product has the weak topology with respect to all
subspaces of the usual product I x Γ o f the form:

X x B where B is compact in Y, and {x} x Y where xeX.

It is also shown in the same paper [4, p. 242, Remark 1.15] that
there is a similar general exponential law for TOP relating function
spaces with the topology of pointwise convergence to another suitably
retopologized product. It is known [24, p. 277] that an analogous
result holds for function spaces with the indiscrete topology. This
is not a completely trivial example as the product used does not
have the discrete topology, see example (ii) in §8 below. Hence we
know of two general exponential laws for TOP and, by restriction,
three such for HAUS. Wyler [25, p. 227] raises the question of
finding new closed structures for TOP. Another similar theory is
developed in [21, Chapter 5] for function spaces with the cs-open
(convergent sequence open) topology of [12, 13]. It is shown ([21,
p. 61] and example (i) §6 below) that the corresponding ^ is a
continuous bijection; we have not been able to determine if it is, in
general, a homeomorphism.
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The work of [4] has been generalized by at least two authors,
i.e., Vazquez [22] and Wilker [24]; the former replacing compact-open
topologies by set-open topologies [1] and the latter by a type of
generalized set-open topology. In each case there is an investigation
of conditions that have to be placed on these defining classes of sets
to ensure a reasonable exponential law.

The basic purpose of this paper is similar to that of the two
authors just referred to, i.e., to develop the approach of [4] into a
unified theory of function spaces with set-open topologies. Our
method is to replace the use of "compact subspaces" with "maps
from classes of spaces j ^ " , i.e., the "sets" of our set-open topologies
are the continuous images of spaces in the class Jzf. It has come
to the authors' attention, since the completion of a first version of
this manuscript, that this program was in fact proposed by R.
Brown in [6, p. 7], We do not, however, restrict our attention to
Hausdorff space as was suggested there.

A key feature of our approach is that it leads to a theory in
which the conditions arising are simple topological restrictions on
the spaces in the classes J%f; this has the advantage of making it
very easy to generate a considerable variety of examples. Our initial
restriction on the types of sets that can be used in our set-open
topologies does not seem to exclude any important examples.

If A is a space, / : A-^Y is a map and U is open in Z then
W(ft U) will denote the subset of M(Y, Z) consisting of all maps g
such that gf{A) £ V.

DEFINITION 0.1. Let j y be an arbitrary class of topological
spaces. We use Sxf to topologize M(Y, Z), the subbasic open sets
being all sets of the form W(f, U), where A e S?/ and U is open in
Z. This topology will be called the Jzf-open topology for M(Y, Z):
the corresponding function space will be denoted by M^(Y9 Z).

It is easily seen that M^ ( —, —) is a bifunctor from TOPOP x TOP
to TOP. This function space is similar to — but presumably not
identical with — the function space Ca(Y, Z) defined in [25, p. 232];
the topology is a set-open topology in the sense of [1, p. 13, Definition
4.2].

In §1 we define a modified product X X ^ F a n d investigate some
of its basic properties. We then (§2) determine some conditions on
S$? sufficient to ensure that X X^Y and M^(Y, Z) are related by
an exponential law (2.4) and for a monoidal closed structure to be
determined on TOP (2.6). We use 2.4 to obtain conditions under
which the cartesian product 1 x 7 and M^(Y, Z) are related by an
exponential law (§3). In the particular case where Jtf is the class
of compact Hausdorff spaces and X and Y are Hausdorff this gen-
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eralizes the best known exponential law, i.e., the standard conditions
relating 1 x 7 and the compact-open topology function space ([9, p.
265, Theorem 5.3] and see example (v) below).

Given a space X and a class of spaces ^ aX will be defined to
be the underlying set of X retopologized with the final topology
with respect to all incoming maps from spaces in Ĵ Γ It is clear
that a is a covariant functor from TOP to TOP. We call X an α-space
if aX = X; the category of all α-spaces is the coreflective hull of
>S%f in TOP. Several authors have shown that, with suitable restric-
tions on j ^ the category of α-spaces is cartesian closed. We retrieve
some of these results in §4 via a different method; by simply showing
that within these categories the product l χ y 7 coincides with the
categorical products and so the cartesian closed structure is essentially
a restriction of the previously established monoidal closed structure.

It is well known that the category of all f-spaces ( = α-spaces
with respect to the class of all compact Hausdorff spaces) is simply
the category of all quotients of locally compact Hausdorff spaces,
the category of all sequential spaces is the category of all quotients
of first countable spaces and so on. We generalize these results in
§5 to the level of arbitrary classes j y and the corresponding α-
spaces.

In §6 we consider the example of the cs-open topology and the
associated cartesian closed category of sequential spaces. This leads,
in §7, to a discussion of the circumstances in which cartesian closed
categories of α-spaces can be regarded as being convenient; the point
being that they must contain the underlying spaces of all CW-
complexes, differentiate manifolds and metric spaces. Further ex-
amples are considered in §8; five of them involving function spaces
with (a) the indiscrete topology, (b) the topology of pointwise con-
vergence, (c) a topology which coincides with the compact-open
topology Mcot(Y, Z) whenever Y is Hausdorff, (d) a "cube-open"
topology and (e) a "compact Hausdorff countable-open" topology, are
proved to generate distinct monoidal closed structures for TOP. Con-
ditions are given in § 9 for some of our function space topologies to
coincide.

NOTATION. We use the symbols lXt lx etc. to denote identity
maps and i to denote inclusions; the symbol = will always denote
a homeomorphism. We use U to denote the disjoint topological sum.

The following standard result will prove useful later.

LEMMA 0.2. // .$>/ is a class of spaces containing at least one
nonempty space and X is an a-space then X is the quotient of a
topological sum of a set of spaces in Jtf.
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Proof. Let A denote the set of nonclosed subsets of X. For
each Xe Λ we can choose an Aλ e ,s>f and a map pλ: Aλ —> X such that
pγ\X) is not closed in Aλ; choosing a nonempty space A e ,$f we
can, for each xe Xy define the constant map cx: A—>X value x.
Taking \JxeχAx to be the disjoint topological sum of a collection of
copies of A indexed by the points of x e X then we can define

V = (U Px) U (U cΛ (U A) U ( U A,) • > X
\λeA / \xeX / \/.β ./ / \x e X /

to be the obvious surjective map. It follows from the composition
rule (or transitive law) for final topologies [5, p. 96] that X has the
final topology with respect to p and hence is a quotient of (U .eΛ-4.;.) U
(UβxAJ.

The authors wish to acknowledge some helpful observations by
the referee, including the suggestion of 1.4(iii) and the generalization
of previous versions of 4.3 and 4.4.

1* The J^product*

DEFINITION 1.1. Given a class of spaces J ^ we define XXS/Y
as the set X x Y with the final topology with respect to all incoming
maps of the forms:

lx x f:Xx A > XxY,fe M{A, Y\ A e .sV

i:{x) xY >XxY, xeX .

We will refer to X X^ Y as the *Ssf-product of X and Y; it is
clear that — χs/ — is a bifunctor from TOP X TOP to TOP.

PROPOSITION 1.2. If A is a class containing a nonempty space
and {*} denotes a singleton space then

Proof. The first homeomorphism follows from the universal
property of final topologies, the second from the definition of Y X^ {*}.

LEMMA 1.3. a(YXs/Z) = a(Y x Z).

Proof. The identities

a(Y xZ) >YXS,Z >Yx Z

are clearly continuous. Applying the functor α, and recalling that
a a(Y x Z) = a(Y x Z), [23, Proposition 1.2(e)], the result follows.
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PROPOSITION 1.4. Given spaces X, Y, Z.
( i ) The identity function

XXsAY Xs, Z) > (X Xs/Y) X^ Z

is continuous.
(ii) // ,$/ is a class of locally compact Hausdorff spaces closed

under the formation of cartesian products then the above identity
is a homeomorphism.

(iii) If jzf is a class of locally compact Hausdorff spaces with
the property that A, B e j^ implies that A x B is an a-space and
X is a ΐ-space then the above identity is a homeomorphism.

Proof. It follows from 1.3 and [23, Proposition 1.2(c)] that the
natural function from M(A, Y)xM(A, Z) into M{A, Y X^ Z) is a
Injection, where A e Ĵ < hence we see, using the composition rule
(or transitive law) for final topologies, that X X^(YX^Z) has the
final topology with respect to all incoming functions

lx X (/, g): Xx A > XxYx Z

i x lγ x g: {x} x Y x A > X xY x Z

i x i x lz: {x} x {y} x Z > X xY x Z

where / e M(A, Y), g e M(A, Z), Ae jzζ xe X, y e Y.
Also we notice that ( I X ^ Γ ) X^ Z has the final topology with

respect to all incoming functions

lx g:(XX^Y) x A > (X xY) x Z

i: {x} x {y} x Z >(X xY) x Z

where g e M(A, Z) and A e
( i ) it is clear that 1 x (f, g): X x A -+ X xY x Z factors

through the corresponding map lxfxg:XxAxA-*XxYxZ;
the result follows.

Parts (ii) and (iii) require a slightly modified description of the
topology on ( i χ y 7 ) X&Z. We notice that if K is locally compact
Hausdorff and S has the final topology with respect to a family of
incoming functions {/<: d-+S}ieI then S x K has the final topology
with respect to the family {ft x lκ: Ct x X—> S x K} (this is easily
verified using [9, p. 265, Theorem 5.3] and the universal property
of final topologies). It follows, by the composition rule for final
topologies [5, p. 96], that if <s>/ is a class of locally compact Haus-
dorff spaces then (XX^Y) X^Z has the final topology with respect
to all incoming functions
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lxx f xg .Xx A' x A > XxYx Z

i x lγ x g: {x} x Y x A > X xY x Z

i x i x lz: {x} x {y} x Z > X xY x Z

where feM(A'f Y), g eM(A, Z), A, A! e^ff xeX, y e Y.
(ii) If A, A'ej*ζfeM(A, Y),geM(A',Z) then A" = A x A' e
and

Ix f x g:Xx Ax A' -—> X xYx Z

can be expressed in the form

1 x (/proL, tfprojj: X x A" >X x Yx Z;

hence the identity (XX^Y) X^Z-+ XX^(YX^Z) is continuous.
(iii) It follows from Lemma 0.2 that there is an identification

map p:C~ \Jχ^ΛCλ —> X, where each Cλ is compact Hausdorff. Now
A x A1 is an α-space so there is an identification q: A" = {Jμ&M A"—>
A x A' and the composite

C x Ar; > C x A x A1 > X x A x A!
l x g v x U x 1A'

is also an identification; the last fact following by the argument
used at the beginning of (ii). The composites

Ca x A; > X x Ax A! • (X Xs,Y)X* Z
1 X/X ff

factor through the maps

1 x (f,g):Xx A > l X y ( 7 X , ^ )

and the result follows.

2* Exponential laws and monoidal closed structures for TOP*

PROPOSITION 2.1. (Proper condition, compare with [1, Theorem
4.21].) // the spaces in .Szf are compact and f: XX ,Y"-> Z is
continuous then f(x, y) = f'{x){y) determines a continuous function

Proof. For each x e X, f\x) is simply the composite

Y={x} xY—-—>IXy7->Z,
inclusion /

the inclusion is continuous from the definition of l χ y 7 , and hence
/ ' is a well defined function.
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Now let W = W{g, U) be a subbasic open set for MS/{Y, Z),
where g: A->Y. If k = /(I x g): X x A —> Z then k is continuous
and k~\U) is open in X x A. Given xe(f')~\W) it is clear that
{x} x A £ AT t̂/). NOW A is compact and so there exists an open
set VQ X such that a e F a n d F x i S k"\U) [14, Theorem 5.12].
This implies that xeVQ ( / T W ) and so (/')""W) is open.

DEFINITION 2.2. The class j ^ of spaces will be said to be a
regular class if for any element k of a set A in Jϊf, any neighbor-
hood of k contains a closed neighborhood C for which there is a
surjective map r: B->C with J5 e Ĵ C We notice that the individual
spaces in ,Ssf must then, of course, themselves be regular.

PROPOSITION 2.3 {Admissible condition, compare with [1, Theorem
4.7].) // ,jy is a regular class of spaces and f: X —> Mj,(Y, Z) is
continuous, then so is the associated function / : X X^Y—» Z.

Proof. We show that the evaluation map,

e:MAY,Z)X^Y >Zf e(g,y) = g(y)9

is continuous and the result will follow since

/ - e(f x 1Y) .

Using the universal property of final topologies and noticing that

e(i x lγ):{h} xY >Z

is clearly continuous for all heMj,(Y, Z), we just have to prove
that

ek = e(l x k): M^(Y, Z) x A > Z, ek(gf a) = gk(a) where

k 6 M(A, Y) , is continuous .

Let U be an open subset of Z and (g, a) 6 eι\U). Then the regularity
of j y ensures that there is an open set V and a closed set C such
that

aeVQCQ k~ιg~\ U) with TF(fc \C, U) = W(kr, U) ,

for a suitable choice of r. Hence W(k\C, U) is a subbasic open set
for MΛY,Z) and g(a) e(W(k\C, U) xV)open Q eϊ\U) ensures that

is open and that e*. is continuous.

THEOREM 2.4 {Exponential law), (i) Given that X, Y9 Z are
spaces and jzf is a regular class of compact spaces. The function
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θ: MAX, MA Y, Z)) > MAX X , Y, Z) ,
θ(f') = f, f(x, y) = f'(x)(v), xeX,yeY,

is a continuous bisection.
(ii) //, in addition, .s&" is a class of Hausdorjf spaces closed

under the formation of cartesian products then θ is a homeomor-
phism.

Proof, (i) It follows from 1.4(i) and the continuity of the
evaluation maps e (see the proof of 2.3) that the composite

MAX, MAY, Z)) XAX X^Y) -γ-> (MAX, MAY, Z)) x^X)

Xs,Y—?MAY, Z) X^Y >Z
e X 1 e

is continuous; the result follows from 2.1.
(ii) This follows from 1.4 (ii), 2.1, 2.3 and [15, Theorem 10].

DEFINITION 2.5. A monoidal closed structure for TOP will mean
a 4-tuple (TOP, {*}, Xs/y MA~, —)), where {*} is a singleton space
and X^ and MA~, —) are the product and function space bifunctors
associated with some class J ^ subject to the following axioms:

( i ) there is an exponential homeomorphism as in Theorem 2.4(ii);
(ii) there is a natural homeomorphism

φ: X >MΛ{*}, X), Φ(x)(*) = x,xeX

It follows from [10, p. 495, Theorem 5.10] that any such structure
can be completed to determine a monoidal closed category [10, p.
475].

THEOREM 2.6. // ,s*f is a regular class of compact Hausdorff
spaces containing at least one nonempty space and closed under the
formation of Cartesian products then the product l χ y Γ and the
function space M,..,. (Y, Z) determine a monoidal closed structure for
TOP.

Proof. Condition (i) follows from 2.4(ii); condition (ii) either
from the definition of MAY, Z) or 1.2 and the first sentence of [10,
p. 480].

REMARK 2.10. If X, Y are Hausdorff (or ϊ\ or regular) then
XX yY is Hausdorff (or ϊ\ or regular respectively). This follows
from the continuity of the identity i X y Y - ^ I x Γ . If Z is Haus-
dorff (or Tx or regular) then MAY, Z) is Hausdorff (or TΊ or regular
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respectively), the regular case requiring that ^f is a class of
compact spaces. The proofs are similar to the analogous standard
results for the compact-open topology. Hence Theorem 2.5 also gives
sufficient conditions for the existence of monoidal closed structures
on HAUS (and on the categories of ΪVspaces and regular spaces).

3* Exponential law relating cartesian products to function
spaces with the J^-open topology •

THEOREM 3.1. Let <Ssf be a regular class of compact spaces and
X, Y and Z be given spaces.

( i ) The function θ: M^(X, M^(Y, Z)) -^ MAX x Y, Z) is a
continuous bisection if

(ii) //, in addition, *S*f consists of Hausdorff spaces and is
closed under the formation of cartesian products then θ is a homeo-
morphism if and only if I x ί = 1 X ^ 7 .

Proof. This follows easily from Theorem 2.4.

Hence the problem of determining conditions under which there
is a valid exponential law relating X xY with M^{Y9 Z) reduces to
finding conditions under which I x Γ = i χ γ Γ . Criteria of this
type are given by the next result.

DEFINITION 3.2. The space Y is said to be locally j& if each
point yeY has a neighborhood Ay homeomorphic to a space in

PROPOSITION 3.3. Given spaces X and Y and a class of spaces
, if either (i) Y is locally *$zf or (ii) X x Y is an a-space then

Proof. We have to show that 1: Xx Y->XX^Y is continuous.
( i ) We notice that for each choice of y the composite

XxVy—*Xx 4-^lX y7,

is continuous where x e Vy Q Ay and Vy is open in Y. If U is open
in X X^Y it follows that U Π (X x Vy) is open in X x Vy, and there-
fore in X x Y. Hence

U = \JU n (X x Vy) is open in XxY .
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(ii) 1: a(X x Y) —> X X^ Y is continuous, and the result follows
since I x F = a(X x Y).

4* Cartesian closed categories of topological spaces* The reader
will recall that a category of topological spaces is Cartesian closed
[10, p. 551] if it includes a singleton space and is equipped with
categorical product and function space bifunctors related by an
exponential law. It is well known (see e.g., [8, Theorem 3.1], [19],
[23, §3] and [25, Theorem 3.3]) that with suitable restrictions on
•Ĵ  the category of α-spaces is cartesian closed. We prove below
that these ^cartesian closed" exponential laws are simply the restric-
tion of our exponential law {Theorem 2.4) to categories of a-spaces.

Our first result is essentially a slight generalization of [23,
Corollary 3.3(b)].

LEMMA 4.1. Let j y be a class of locally compact Housdorff
spaces satisfying the condition that A x B is an a-space for any
choice of A, Be *$/. If X is an a-space and Ye *s$f then X x Y —
a(X x Y).

Proof. Given that Z is a space and / : I x 7 - ^ Z i s a function.
The continuity of / is equivalent to the continuity of the corre-
sponding / ' : X-^Mcot(Y, Z), and hence to the continuity of all
functions f'g: A —> Mcot(F, Z) where A e j / and geM(A, Y). Now
this last condition is equivalent to the continuity of all f(g x 1F):
A xY ^ Z and so 4 x F has the final topology relative to all maps
g x 1F: A x Y-*X x Y. We notice that maps (g, h):A^XxYfactor
through g x lγ; it follows by the composition rule for final topologies
[5, p. 96] that X x Y is an α-space.

REMARK 4.2. The identities a(X x Y) -> l χ y 7 - > X x Y are
continuous and so, under the assumptions of 4.1, a(Xx Γ) = I X ^ Γ =
1 x 7 . The condition for a(Xx Y) = XX^Y is generalized in the
next result.

PROPOSITION 4.3. Given that <s/ is a class of locally compact
Hausdorff spaces satisfying the condition that A x B is an a-space
for any A, Be Ĵ Γ //Xand Yare a-spaces then X X , Y — a(X x Y).

Proof. Given that A e όzf, X x A is an α-space [23, Corollary
3.3]; it follows that XX Y has the final topology with respect to
all maps

(/, g): A' > XxYfix h: {x} X A' > 1 x 7 ,
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where A'ejtζ fe M(A', X), g e M(A', Y), h e M(A, Y)9 i: {x} -+ X is
the inclusion and xeX. Hence X X^Y has the final topology-
relative to all incoming maps from spaces in

THEOREM 4.4. // szf is a regular class of compact Hausdorff
spaces satisfying the condition that A x B is an a-space whenever
A, Be J^f, then the category of a-spaces with product a(X x Y) and
function space aM^Y, Z) is a cartesian closed category.

Proof.

M(X, aMAY, Z) = M(X, MAY, Z)) [23, Corollary 1.4]

= M(a(X x Y), Z) 4.3

and the result follows.

REMARK 4.5. The other approaches mentioned at the beginning
of this section give slightly stronger results than our 4.4; we can
in each case delete the regular class requirement, the last two
(equivalent) cases use a(Meot(Y, Z)) rather than our aM^(Y, Z) for
their function spaces. Our version seems, however, to include all
of the important examples. Also it follows that given spaces Y and
Z and a class J ^ satisfying the conditions of Theorem 4.4 then

5* Locally J&f spaces and α^spaces*

PROPOSITION 5.1. // the space Y is locally ^f then Y is an a-
space.

Proof. If U is open in a Y then U Π Ay is open in Ay for all
ye Y, where {Ay}yeγ is the cover of Y with open subcover {Uy}yeγ

whose existence is implied by the data. It follows that UπUy is open
in Uy for all y e Y; hence Uf) Uy is open in Y and U — \JyeγUΠ Uy is
open in Y. So the identity function Y —> a Y is continuous and hence
is a homeomorphism.

THEOREM 5.2. Let s%f he any class of spaces containing at least
one nonempty space and ^ be a class of a-spaces containing all
topological sums of spaces in *$>/. The class of all a-spaces is then
the class of all quotients of spaces in r^. In particular the class
of all a-spaces can be characterized as either (i) the class of all
quotients of topological sums of spaces in Jzf or (ii) the class of all
quotients of locally Szf spaces .



46 P. BOOTH AND J. TILLOOSON

Proof. If X is an α-space then it is a quotient of a topological
sum of spaces in j ^ (see Lemma 0.2) and hence a quotient of spaces
in ^ . Conversely any quotient of a space in & is a quotient of an
α-space, and hence is itself an α-space [23, Corollary 2.2].

6* First example: the sequential case*
( i ) We will take j%f — ̂ 6^, the class whose only element is

iSΓTO, the one point compactification of the natural numbers with the
discrete topology. Then il4W(F, Z) carries the ^5^-open topology
(convergent sequence-open topology) of [12], [13], Now r^S^ is a
regular class consisting of one compact Hausdorff space and it follows
from 2.4(i) that there is a continuous bijection:

Mr AX, Mr AY, Z)) > Mr AX X^Y, Z) .

Now ^S^ is not closed under the formation of cartesian products,
so it is not clear if the ̂ ^-product is associative, if θ is a homeo-
morphism or if this determines a monoidal closed structure on TOP.

The associated category of α-spaces is the category of sequential
spaces.

It follows from 3.1 and 3.3 that if X and Y are spaces whose
product is a sequential space then

MVAX, Mr AY, Z)) szMrAXx Y, Z).

Various characterizations of the category of sequential spaces follow
from our 5.2, i.e., it is:

(a) the category of metrizable spaces and their quotients,
(b) the category of first countable spaces and their quotients,
(c) the category of direct sums of copies of N^ and their

quotients,
(d) the category of all locally compact metrizable spaces and

their quotients,
(e) the category of all direct sums of compact metrizable spaces

and their quotients,
and

(f) the category of all ikf-spaces [16] and their quotients ((a),
(b), (c) are given in [11]).

A detailed discussion of most of the points raised in this example
is given in [21].

Our sequential exponential laws should not be confused with
the analagous results for L*-spaces [18, p. 200, Theorem 3'] and
"convergences" [21, Theorem 2.5]. These "objects", although they
can be generated by N^, are not topological spaces; the relationship
between such exponential laws and those for sequential spaces is
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discussed in [21, Chapter III].

7* Convenient categories •

DEFINITION 7.1. Given a class j ^ the associated category of
α-spaces is said to be a convenient topological category if:

( i ) it is cartesian closed, and
(ii) it contains the underlying topological spaces of all CW-

complexes, all differentiate manifolds and all metric spaces.
The category is then "closed under certain standard operations"

(it has limits and colimits, subspaces and quotients), (i) ensures
that it is small enough to satisfy "certain reasonable identities" and
(ii) that is large enough to contain (just about) "all of the par-
ticular spaces arising in practice"; it follows that it is convenient
in the sense of Steenrod [20]. For more details of these arguments
the reader is referred to [23, 2.1 and 3.7].

REMARK 7.2. Some limits of spaces (e.g., any cartesian product
of CW-complexes which fails to be a CW-complex) and some func-
tion spaces (e.g., with the compact-open topology) may be outside
a convenient category. We can, however, replace any such spaces
by their images under the appropriate functor a. The fact that a
convenient category includes the standard spheres Sn and cylinders
Sn x I ensures that the identity aX — > X is a weak homotopy equi-
valence and induces isomorphisms of homotopy, homology and cohomo-
logy groups [23, 1.2(h) and 5.3(d)].

PROPOSITION 7.3. Given that J^f generates a cartesian closed
category of a-spaces. The following conditions are equivalent

( i ) the category of a-spaces is convenient,
(ii) Nco is an a-space,
(iii) all sequential spaces are a-spaces.

Proof. The condition (i) => (ii) because N^ is metrizable, (ii) =>
(iii) follows from (c) above and [23, p. 548] and (iii) => (i) is immediate.

THEOREM 7.4. The category of sequential spaces is the smallest
convenient topological category.

Proof. This is immediate from 7.3(iii).

THEOREM 7.5. Let .s^ be a regular class of compact Hausdorff
spaces satisfying the conditions that:

( i ) N^ is an a-space,
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(ii) A X B is an a-space whenever A, Be *S/l Then the category
of a-spaces is a convenient topological category.

Proof. This follows from 6.1 (ii) and 4.4.

REMARK 7.6. (a) Condition (i) is satisfied if N^ e j y [23, 1.2(d)].
(b) If we use a different function space, i.e., aMcot(Y, Z) rather than
aMs/{Y, Z), then the "regular class" condition can be deleted from
7.5 (see Remark 4.5).

8* Further examples* The sequential example has been consider-
ed in §6. Each of the examples (ii), (iii), (iv), (v), (vi), (vii) and (viii)
below is determined by a regular class of compact Hausdorff spaces,
hence each satisfies an exponential law as in 2.4(i). These cases all
involve classes closed under the formation of cartesian products and
hence determine exponential homeomorphisms; all hut (ii) generate
monoidal closed structures for TOP (see 2.6). Example (v) is the
monoidal closed structure for the category of all Hausdorff spaces
associated with the compact-open topology and referred to in the
introduction.

(ii) Let us take j y = gf, the empty class of spaces; then
M&(Y9 Z) has the indiscrete topology and X X^Y has the final topology
with respect to all inclusions

M x 7 >XxY, xeX

(and not the discrete topology as stated in [24, p. 277](. It is easily
seen that this condition ensures that a given function / : X X#Y -* Z
is continuous if and only if the associated / ' : X-+ M (Y, Z) is well
defined, the continuity of / ' being immediate I χ . {*} is discrete and
so the structure is not monoidal closed.

The idea of being locally if (i.e. locally empty) is self contra-
dictory ! The associated cartesian closed category is the category of all
discrete spaces; it is not convenient, however, as it does not contain
many of "the particular spaces arising in practice."

(iii) We now take j y — ̂ *£2ff the class of all finite discrete
spaces; then M^-&(Y9 Z) has the topology of pointwise convergence.
It is known [4, Remark 1.15], [17, Theorem 1.5], [24, p. 277] and
[25, p. 226-227] that this determines an exponential law and hence
a monoidal closed structure on TOP.

If Y is discrete (-locally &~3ί) then J X ^ Γ - I x

θ: Mjr*(X, M^(Y, Z)) > Msr*(X X Y, Z)

is a homeomorphism. The corresponding cartesian closed category
is, as in example (i), the category of discrete spaces.
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(iv) Let us take *$/ = ct^£ίf, the class of all compact Hausdorff
spaces. Then TOP with the exponential law.

Mr AX, Mr AY, Z)) = Mr AX X W Γ, Z)

is monoidal closed.
It follows from 3.1 and 3.3 that if either (i) F i s locally compact

and Hausdorff or if (ii) X x F is a f-space then

Mr AX, Mr AY, Z)) s Mr AX xY,Z).

The associated convenient category is that of f-spaces [7], [2,
p. 276] and [23, p. 558]. It is well known (and follows from 5.2)
that this is the category of all locally compact Hausdorff spaces and
their quotients.

(v) If X and F are Hausdorff then M^AY9 Z) has the compact-
open topology (=Mcot(Y, Z)) [7, p. 23] and I X ^ Γ coincides with
the product l χ g 7 o f [3, p. 309-310], we then have the exponential
law

Mcot(X, MUY, Z)) ~ MUXX,Y,Z)

( = [4, Theorem 1.6]). Hence taking J ^ = <&3(f and working with
the compact-open topology and HAUS we obtain a monoidal closed
structure on that category.

The last homeomorphism of example (iv) then reduces to the
following standard theorem (=[9, p. 265, Theorem 3]): If X, F a r e
Hausdorff and either (i) F is locally compact or (ii) X x Y is compactly
generated, then

MUX, MUY, Z)) = MUX xY,Z).

The associated convenient category is that of compactly-generated
spaces.

(vi) We will now take j y = ^ ^ the class of all compact
metrizable spaces.

It follows from 3.1 and 3.3 that: If either (i) Y is locally compact-
metrizable, or (ii) Xx Yis a sequential space (e.g., X, Y first-countable
or X, Y spaces whose product is a CW-complex) then

Mr AX, Mr AY, Z)) = Mr AX xY,Z).

The corresponding convenient category is that of sequential spaces
[25, p. 236-237]; for more details see example (i) above.

(vii) Let us now take jzf = &£%? the class of all cubes In (I
denotes the unit interval, n > 0 and finite). The associated cartesian
closed category has been discussed in [8, p. 6] and [25, p. 236-237].

It follows from 5.2 that is can be characterized as either
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(a) the category of all underlying spaces of CTΓ-complexes and
their quotients [8, p. 6],

(b) the category of all locally Euclidean spaces and their quo-
tients,

(c) the category of all topological sums of cubes In and the
quotients of such sums, and

(d) the category of all topological sums of copies of the unit
interval / and the quotients of such sums [25, p. 237] (the proof of
(d) involves (c), the fact that each In has the final topology with
respect to all incoming maps from I and the composition rule [5, p.
96] for final topologies).

It follows from 3.3 and (a) above that: if either (i) Y is locally
Euclidean or (ii) X and Y are spaces whose product is the underlying
space of a CίF-complex then

M^{X, M^{ Y} Z) ~ M^(X x Y, Z) .

The associated, cartesian closed category, although adequate for many
purposes in Algebraic Topology, is not a convenient topological
category sense. The reason is that it does not contain all metric
spaces; in particular it does not contain N^, for it is easily seen
that the corresponding aN^ carries the discrete topology.

(vii) Finally we take >szf = ^^(f^, the set of compact Hausdorff
spaces whose underlying set is countable. A monoidal closed structure
for TOP and associated convenient category are determined. Now
countable compact Hausdorff spaces are metrizable, so

{iNL} c ^ ^ r ^ c <&Λ

and the associated convenient category is that of sequential spaces
[25, p. 237].

REMARK 8.1. Many other classes of spaces >s*f determine monoidal
closed structures for TOP and cartesian closed (and often convenient)
categories of α-spaces. Assume for example that P is any property
of topological spaces that is productive [14, p. 133] and closed here-
ditary, the last condition meaning that if a space satisfies P then
all of its closed subspaces satisfy P. It follows that if

j ^ = the class of all compact Hausdorff spaces satisfying P

contains a nonempty space then it generates a monoidal closed
structure for TOP and a cartesian closed category of α-spaces. The
reader might also consider the results of taking j y = {/} or *$/ =
{N£\n = a finite integer}.

It is not, however, clear to the authors that any of the modified
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products, function spaces M^{ Y, Z) and categories of α-spaces gen-
erated are distinct from examples (i) (viii) above (compare with
§9).

9* Comparison of function space topologies* It is clear that
if JXζ, J&Z are classes of spaces and JϊζQ J^J then the J^-open topology
is contained in the J^ζ-open topology; hence the following identity
functions are continuous:

, Z)~—MvMY, Z)

The gf-open and ^"^-open topologies are the indiscrete topology
and the topology of pointwise convergence respectively; furthermore
the latter is completely independent of the topology on Y, so these
two are in general distinct from the others. It is shown in [13, p.
110] that the ^5^-open topology is in general distinct from the
compact-open topology; the same argument shows that both the
<g^-open and ̂ ^Tΐf-open topologies differ from all of the ^Stf-
open, <ĝ  ̂ -open and <g*^-open topologies. The essential point here
being that one cannot cover the unit interval with union of a finite
countable sets.

LEMMA 9.1. Let <Ssff ,Stf" be regular classes of compact Hausdorff
spaces closed under the formation of cartesian products and Y be a
given space. Then M^{Y, Z) — My>(Y, Z) for all spaces Z if and
only if XX^Y = XX^fY for all spaces X.

Proof. This follows from Theorem 2.4 and the uniqueness of
adjoints.

PROPOSITION 9.2. ik2W(Γ, Z) Φ M^(Y, Z), in general.

Proof. It is sufficient, by the previous lemma, to show

N^X^N^ΦN^X^N^.

Consider the set:

D = {(n, n)\neNJc:Ni .

-ΛL X^/ iVTO = iVTO x N^ (by Lemma 3.3) and D is not closed in that
space. On the other hand all maps from In into N^ are constant and
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so JV«, X ^ #«, has the final topology with respect to all inclusions

{x} x iVTO > Nw x N,,, Nw x {̂/} > N«, x JVΌo, x.yeN^ .

Hence Z> is closed in N^Xr&N* [5, p. 93, 4.22(b)] and the result
follows.

Hence we have proved the following result.

THEOREM 9.3. There are at least five distinct set-open function
space topologies on M(Y, Z) {indiscrete, pointwise-convergence, ^β^-
open, ^έ^-open and ^^f^-open) that have associated exponential
homeomorphisms in TOP.

We have not been able to determine whether:
( i ) Mr*>r(Y9 Z) and Mr AY9 Z) are in general distinct;

and
(ii) Mr AY, Z) and M^(Y, Z) are in general distinct.

Question (i) is related to the problem of whether Mr<r (Y, Z) deter-
mines a monoidal closed structure on TOP; question (ii) is of some
interest because ^Sίf and ^ ^ give rise to different convenient
categories.

PROPOSITION 9.4. Given spaces Y, Z.
( i ) If Y is a discrete space then

M^(Y, Z) = Mr AY, Z) = Mr AY, Z) = Mrw(Y, Z)

= Mr AY, Z) = Mr AY, Z) = MUY, Z).

(ii) If Y is locally Euclidean

MτAY, Z) = Mr AY, Z) - Mr AY, Z) .

(iii) // Y is metrizable

Mr AY, Z) = Mr AY, Z) = ΛΓeotCΓ, Z) .

Proof, (i) For each choice of j*r the subsets f(A) of Y are
compact, and hence are either the finite subsets or the singleton
subsets; hence the function space topologies coincide.

(ii) We have, for all spaces X

-^ X sr str *• — -Λ X ^ ^ r JL — -Λ. X <#c& Y ^ J£ X Y

(by 3, 3); the result follows by 9.1.
(iii) This is immediate from the definitions involved.

ACKNOWLEDGMENT. Georg Grene has pointed out the necessity
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of excluding the case J ^ = £? from 1.2 and 2.6, hence if does not
therefore determine a monoidal closed structure on TOP.
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