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Let T be a locally compact subset of R and C0(T) the
space of continuous function which vanish at infinity. An
n dimensional subspace G of CQ(T) may possess one of the
three alternation properties:

(A-l) For each fe C0(T) which has a unique best approx-
imation g0 € G, f — g0 has n + 1 alternating peak points;

(A-2) For each feC0(T), there exists a best approxima-
tion g0 e G to / such that f—g0 has n + 1 alternating peak
points;

(A-3) For each feC0(T) and each best approximation
go e G to / , / — g0 has n + 1 alternating peak points.

In this paper, for each i e {1, 2, 3} we give an intrinsic
characterization of those subspaces G of C0(t) which have
property (A-i).

1* Introduction* The classical alternation theorem states that
if G is an n dimensional Chebyshev subspace of C[α, δ], then for
each f eC[a, b] and its unique best approximation g0 e G, the error
f — g0 has n + 1 alternating peak points. It is natural to ask whether
such a result remains valid if we replace C[a, b] by C(T), where T
is an arbitrary compact subset of the real line R or, more generally,
by CO(JΓ), where T is any locally compact subset of R. [Here C0(T)
denotes the Banach space of all real-valued contionuous functions /
on T "vanishing at infinity" (i.e., {t e T\ \f(t)\ ^ ε} is compact for each
ε > 0), and endowed with the supremum norm: | | / | | = sup ί eτΊ/(ί)|.
When T is actually compact, we often write C(T) for C0(Γ).] And
if such a result is not valid, characterize those n dimensional subspaces
G of GQ(T) for which the result does hold.

Properties (A-l) and (A-2) above, in the special case T = [α, 6],
have been considered by Jones and Karlovitz [6] who proved that
an n dimensional subspace G of C[a, b] has property (A-l) if and only
if G has property (A-2) if and only if G is "weak Chebyshev" (i.e.
G has property (W-4) defined below). Furthermore, Handscomb,
Mayers, and Powell [5; Theorem 8] showed that an n dimensional
subspace G of C[a, b] has property (A-3) (if and) only if G is a
Chebyshev subspace. (The "if" part is just the classical alternation
theorem.)

In this paper, for each i e {1, 2, 3}, we give intrinsic character-
izations of theose subspaces G of C0(T) which have property (A-i).

It turns out that, contrary to the case when T — [a, b], properties
(A-l) and (A-2) are not the same in general; and property (A-3) does
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not characterize Chebyshev subspaces. In giving our characterizations
of the alternation properties, the following kinds of "weak Chebyshev"
subspaces play the major role. (In the definition below, the letter
"W" is an abbreviation for "weak Chebyshev".)

DEFINITION 1.1. An n dimensional subspace G of C0(T) is said
have property

(W-l). If for each 1 <; m ^ n and each set of points — <*> =
t0 < tx < < tm-x <tm= co with tt e T(i = 1, 2, , m - 1), there
exists 0 Φ g e G such that

(-l)'ff(ί) ^ 0 for all t e [ti9 ί<+1) f)T (i = 0, 1, -, m - 1)

(W-l'). If it satisfies the condition of property (W-l) only for
m = n;

(W-2). If for each 1 ^ m <; n and each set of points - c o = ί0 <
ίi < < *„»-! < tm — co with t, e Γ (i = 1, 2, , m — 1), there exists
0 Φ g e G such that

(-lYg(t) ^ 0 for t e [tt9 ti+1] n Γ (i = 0, 1, , m - 1)

(W-2') If it satisfies the condition of property (W-2) only for
ra = n;

(W-3). If for each basis {glf g2f -—fgn} of G and each set of
points tx < tz < tΛ and ^ < s2 < < sΛ in Γ,

where

. . . γ j
' n/

Ξ det [flfi(r,-)]

(W-4). If each geG has at most n — 1 sign changes, i.e., there
do not exist n + 1 points <x < ί2 < < tn+1 in T with g(ti)g(ti+1) < 0

In §2, we study the various relationships between these weak
Chebyshev properties. The main result here is Lemma 2.2. In §3,
we establish that property (A-l) is equivalent to property (W-l)
(Theorem 3.1). In §4, we prove that property (A-2) is equivalent to
each of the (equivalent) properties (W-2), (W-2'), (W-3), and (W-4)
(Theorem 4.1). In §5, we show that property (A-3) is equivalent to
G being Chebyshev and having one of the equivalent properties (W-2),
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(W-2'), (W-3), and (W-4) (Theorem 5.1). This allows us to give an
example (Example 5.4) showing that the Handscomb, Mayers, and
Powell characterization of Chebyshev subspaces is not valid in general
if T is not an interval. In §6, we give some examples of weak
Chebyshev subspaces which are not Chebyshev. In §7, we characterize
the n dimensional Chebyshev subspaces of C0(T) for certain locally
compact Hausdorff spaces T (including T metric, but not necessarily
a subset of R).

It is worth mentioning here the motivation for the original use
of the term "weak Chebyshev". Recall the classical result that an
n dimensional subspace G of C[a, b] is Chebyshev if and only if for
any basis {glf g2, , gn} of G and each set of points tx < t2 < <
tn and Si < s2 < < sn in [a, 6],

Karlin and Studden [7] generalized this determinant criterion and
defined a weak Chebyshev subspace in C[a, b] as one having what we
have called property (W-3). It is mainly for this historical reason
that we have kept the term "weak Chebyshev subspace". However,
in contrast to the case when T = [α, 6], not every Chebyshev subspace
of C0(T) has property (W-3) (see Example 3.3).

We conclude the introduction by recalling some basic terminology
and notation. A best approximation to feC0(T) from G is any
element gQeG such that | | / — go\\ = infff6<? 11/ — g\\. The set of all
best approximations to / from G will be denoted by Pσ(f). G is
called a Chebyshev subspace if PG(f) is a single element for each
feCQ(T). An n dimensional subspace G of CQ(T) is called a Haar
subspace if 0 is the only element of G having n (or more) zeros in
T. It is well known (at least when T is compact) that G is a Haar
subspace if and only if it is Chebyshev. A peak point for f eC0(T)
is any teT with | f(t)| = | | / 1 | . (This differs from what many authors
call "peak points".) A set of points tλ < t2 < < tk in T are called
alternating peak points for / if each << is a peak point of / and
the /(«,) alternate in sign, i.e., /(«,) = σ(-iy\\f\\(i = 1, 2, , k) for
some σe{—1,1}. By an interval in R, we shall mean any set of
the form (α, δ), (α, 6], [α, 6), or [a, 6], where — oo<;α<δ<:oo a n ( j
a = — oo or ί)=co is possible on the open end. Note that every
interval in R is locally compact.

Throughout this paper, unless explicitly stated otherwise, we
assume that n is some arbitrary but fixed positive integer and T
is a locally compact subset of R which contains at least n + 1
points.
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2* Weak Chebyshev subspaces* We shall use the following
topological result [1] (I. 9.7. Propositions 12 and 13, and I. 3.3,
Proposition 5).

LEMMA 2.1. A subset Y of a locally compact Hausdorff space X
is locally compact <=>Ϋ\Y is closed. In particular, T\T is closed.

It is sometimes a useful technical device to extend the functions
in C0(T) to functions defined on the smallest closed interval IT with
contains T (i.e., the intersection of all closed intervals containing T).
Since each function f eC0(T) is uniformly continuous, it has a unique
extension on to a continuous function / on T. Obviously, we must
have / — 0 on T\T. Since R\T is open, it has a unique representation
as a countable union of disjoint open intervals. Hence also IT\T —
\JjIj, where {Iό) is a countable collection of disjoint open intervals.
We now define / o n IT\Tby extending /linearly across each interval
Iό. It is easy to verify that the resulting function / is in C0(IT).

Summarizing, each f eC0(T) can be extended to a unique function
feCQ(IT) defined by / = 0 on T\T and / is linear on each of the
disjoint open subintervals whose union is IT\T. In the sequel, the
notation / will be reserved for this unique extension of / to all of
IT, and we let G = {g \ g e G) denote the extension of the corresponding
subspace G.

LEMMA 2.2. Let G be an n dimensional subspace of C0(T).
Consider the following statements:

(1) G has property (W-l);
(1') G has property (W-l');
(2) G has property (W-2);
(2') G has property (W-2');
(3) G has property (W-3);
( 4 ) G has property (W-4).
Then (Γ) <= (1) <= (2) -> (2') <=> (3) <=> (4). Moreover, (1) =~ (2) and

(1') =̂> (1) in general. In the case n = 1, all the properties are equi-
valent to the existence of a nonzero function g eG with g(t) ^ 0 for
all t e T.

Proof. The last statement is obvious as are the implications

(2) - (2') and (2) => (1) - (Γ).

(2') => (3). Let sx < s2 < - < sn in T be such that D(gi°2 ' " gA Φ

0. For each integer k e {1, 2, , n) define ukeG by

uk(x) = D[ D
\ XS, ' Sk^ Sk+1 j
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Note that

( 2 ) uk(β<) = (-1)"-%, (i, k = 1, 2, - - -, n) .

S e t ί&o = — °°, £i?i = «i (i = 1, , k — 1), xt — si+1 (i = k, , n — 1), a n d

αn = oo. By property (W-2'), there exists 0 Φ vkeG such that

(-l)X(ίc) ^ 0 for all x e [xu xi+1] n Γ

(ΐ = 0, 1, , n — 1). In particular, vk(8t) = 0 for all i Φ k and
( —l)*-iV t(β t) g> 0. Since fa^, w2, * , ^ } is a basis for G, it follows
using eq. (2) that vk — Xkuk for some Xk > 0.

Now let t, < t2 < < tn in T with Z?^.1^2 ' ' ' f Λ ^ 0. Suppose

there is a & such that sfc?{ίi, ί2, •• ,-U Since ufc ^ 0, it follows
that there is an m such that uk(tm) Φ 0. From eq. (2), tm& {slf •••,
«*-i, β*+i, , *•}. Set {rlf r2, , r j = {ŝ  , sh-u sk+1, , sn} U {ί»}
with r ΐ < r ί + 1 for all i. Then tm e (xi9 xi+1) for some ί e {0, 1, , w —1}
implies

so

U2 ' ' ' 9n

Wi * rj \s,s2

DίβlSt'"9'].D(g'βt'"g')>0.

By a repeated application of this argument, we obtain that

Thus G has property (W-3).
At this point it is convenient to isolate some useful facts which

will simplify the proof of Lemma 2.2 and are of independent interest.

CLAIM 1. G has property (W-3) (resp. ((W-4)) in C0(T) <=> G has
property (W-3)(resp. (W-4)) in C0(IT).

Proof of Claim 1. If G has property (W-3)(resp. (W-4)) in C0(JΓ),
then the restriction G = G \ τ obviously has property (W-3) (resp. (W-4))
in C0(Γ).

Next suppose G has property (W-3) in C0(Γ). If G fails to have
property (W-3) in C0(IT)y there exist points sλ < s2 < <sn and
?i < t2 < - < tn in IT such that
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Let k be the smallest index such that tk g T, and set tt = ΐ(e T
(i = 1,2, •••, k - 1). Define

(telT)
tk_1ttk+1 ' ' t j

Then ^ e G and g(tk) > 0. Now tkelm — (α, &) for some open interval
Im (where IT\T = \JTlj), and g is linear on Im implies g(a) > 0 or
g(b) > 0. We may assume g(a) > 0. But the endpoints of Im lie in
the boundary of IT\T, and hence in Ί\ Since £ = 0 on T\T, aeT.
Set tfc = a. Then

J )(ί""fV'"r)-«ω > β

\ h ' ' ' τkτk+ί * * ' c%/

Continuing in this way with tk+19 ••-,?», we obtain points tt <t2 <
• < ίw in Γ such that

where fif4 = gjr e G. Similarly, we obtain points β! < s2 < < sn in
T such that

D(βl'~βΛ<0.

But this contradicts G having property (W-3). Thus G must have
property (W-3) in C0(IΓ).

Now let G have property (W-4) in C0(Γ). If G fails to have
property (W-4) in C0(IT), there exist g eG and points ?Ί < ?2 < <
tn in /Γ such that g(tt)g(ti+1) < 0 (i = 1, 2, . ., n). If all ^ are in
T, then the function gr = g\τeG satisfies

1)< 0 (i = l ,2, .- ,*ι)

which contradicts G having property (W-4) in C0(T). Thus let k be
the smallest index such that tkίT and set tt = ̂  e Γ for i = 1, 2, ,
fc — 1. Since ^ = 0 on f \Γ, ?fc e J Γ \ f so ?fc e Im for some open interval
Jm. We may assume g(tk) < 0. By the same argument as in the
above proof of the implication "G has (W-3) => G has (W-3)", we
obtain a point tkeT such that

<i < ί* < * < tk < tk+ι < < FH+1
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and g(tk) < 0. Continuing in this way with tk+ί, ••>?*+!, we obtain
points tx < t2 < < tn+1 in T such that

9(tMti+ύ = 3r(ί<)9r(ίi+,) < 0 (i = 1, 2, . . ., Λ) ,

where # = g ^ e G . But this contradicts G having property (W-4) in
Co(Γ).

CLAIM 2. Let / be an interval in R, H an n dimensional subspace
of COCO, and (Jά) an increasing sequence of compact intervals such
that I — \Jΐ I, and H\Iι is n dimensional. Then, for any given ie
{1, 1', 2, 2;, 3, 4}, H has property (W-i) in Co(/) -=> #1/, has property
(W-i) in CoCJ,) for each j .

Proof of Claim 2. Clearly, if H has property (W-i) in CQ(I), then
the restriction H\Iό has property (W-i) in C0(Ij) for each j .

Conversely, suppose first that H\IQ has property (W-2') in CQ(Iό)
for each j . Let — oo = t0 < ίx < < tn_λ <tn= ~, where ίi 6 / (i =
1, 2, , n — 1). Choose N sufficiently large that tt e IN (i = 1, 2, ,
^ — 1). For each k ^> N there exists Λfc e£F'|Ifc\{0} such that

{-lYKit) ^ 0 for all t e [ί€, ίi+ι] n /*

(i = 0, 1, , n — 1). Choose gkeH such that /^ = ί/J^ and let g be
a cluster point of the sequence (gk/\\9k\\)' Then geH\{0} and

(-l)V(ί) ^ 0 for all t e [ti9 ti+1] n /

(i = 0, 1, , n - 1). Thus H has property (W-2') in C0(I).
The proof of the implication "<=" in the case when ί = 1, 1', or

2 is similar to the case i = 2' proved above.
Next, assume that H\Iβ has property (W-4) in CQ(IS) for each j .

If H fails to have property (W-4) in C0(7), there exist points tx <
<2 < < *» i n ί and fc e i ϊ such that h(tx)h(ti+ι) < 0 (ΐ = 1, 2, , n).
Choose N sufficiently large that ^ 6 / ^ for all i. Then hN •= h\lNe
H\lN satisfies

< 0 (i = 1, 2,

which contradicts fί|/Λr having property (W-4) in Co(/^). Thus J? has
property (W-4) in C0(I).

The proof of the implication "<=" in the case when ί = 3 is
similar to the above proof when i = 4.

CLAIM 3. Let I be an interval in R and i ϊ an n dimensional
subspace of Co(/). Then H has one of the properties (W-2'), (W-3),
or (W-4) <=> H has them all.
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Proof of Claim 3. There exists an increasing sequence of compact
intervals (Jy) such that I — UΓ/y and H\Iχ is n dimensional. By
Jones-Karlovitz [6], H\Iά has one of the properties (W-2'), (W-3), or
(W-4) in Cύ{Ij) <=^H\Ij has them all. The result now follows from
Claim 2.

CLAIM 4. Let / be an interval in R and H an n dimensional
subspace of C0(J). Then H has property (W-2') <=* H has property
(W-2).

Proof of Claim 4. The implication "<=" is obvious. Thus assume
H has property (W-2') Let 1 <; m <̂  n and — °° — t0 < tx < <
ίm_x < tm = oo with ti 6 / (i — 1, 2, , m — 1). We may assme m <n.
If im_x < sup/, choose points *<*> < t^+1 < • < f^ < i f = oo, with
tm-i < t£\ tίk) e I (i = m, m + 1, , ^ - 1), and tί*} ~> sup / as & -> ex,.
Define ί]4> = tt if 0 <Zί^m — 1. If ίm_x = sup/, choose points tlίU <
tΐ < - < ^ < i f - oo, with ίm_2 < ίίfLx, ίίfc) 6 / (i = m - 1, m, . ,
w - 1), and ί ί i i -> sup / as fc -^ oo. Define ίίfc) = ^ if 0 ^ i ^ m - 2.
In either case, there exists hk e ίί\{0} such that

( - l ) % ( ί ) ^ 0 for all ί 6 [ίl&), ίffi] Π /

(ΐ = 0, 1, , ^ — 1), and all k. Let h be any cluster point of the
sequence (hk/\\hk\\). Then heH\{0} and

(-l)*Λ(ί) ^ 0 for all t e [ί€, <<+1] Π /

(i = 0, 1, , m — 1). Hence H has property (W — 2).
We can now easily complete the proof of Lemma 2.2.
( 3 ) => (4). If G has property (W-3) in C0(Γ), then Claim 1 implies

G has property (W-3) in Co(/T). By Claim 3, G has property (W-4)
in C0(IT). By Claim 1, G has property (W-4) in C0(Γ).

( 4) => ( 2). If G has property (W-4) in C0(T), then G has property
(W-4) in C0(IT) by Claim 1. By Claim 3, G has property (W-2') in
C0(IT). By Claim 4, G has property (W-2) in C0(IT). Clearly, G =
G | Γ has property (W-2) in C0(Γ).

We show that (1) ^> (2) and (Γ) =^> (1) in examples below. This
completes the proof.

The proof of the implication (2') => (3) is an obvious modification
of the proof given in [6] for the special case T = [α, 6]. The implica-
tions (2') => (3) =̂> (4) have been verified independently by Zielke [10]
using a different argument, and in the more general setting with G
any n dimensional subspace of Rτ: the set of all real-valued functions
on T, where T is any subset of R.



WEAK CHEBYSHEV SUBSPACES AND ALTERNATION 17

The following two examples show that the the implications (1) =>
(2) and (Γ) => (1) in Lemma 2.2 are false in general.

2*3* Example of a subspace having property (W-1') but not
(W-1)- Consider the set T = {1, 2, 3, 4} and G = span {g19 g29 g3} c C(T),
where g1 = δt - δ4, g2 = δ2 - <?4, gs = δ3 - <54, and δt(j) = 1 if i = j , 0 if
i Φ j . It is easy to see that there is no g Φ 0 in G such that g ^ 0.
Thus G fails (W-1). To see that G has property (W-Γ), we show
that for each pair of points tt < t2 in Γ, there is a nonzero # e G
such that (-iYg(t) ^ 0 for all ί e [<t, ί<+1)n Γ (i = 0, 1, 2) (where ί0 =
— oo and t8 = °°) We list all the possible choices of tλ < t2 and the
corresponding g below. If {tl9 t2} = {1, 2}, {1, 3}, or {1, 4}, take g = —gx.
If {tl9 Q = {2, 3} or {2, 4}, take g = g1 - g2. If fe, ί2} = {3, 4}, take
9 = ~^3.

2»4 Example of a subspace having property (W-1) but not
(W-2) Let T be the set of natural numbers and let G — span {gl9 g2] c
C0(Γ)( = c0), where & = δ2, g2 = δ2- δBf and δέ(i) = 1 if i = i, 0 otherwise.
It is easy to check that G has property (W-1). However, the function
g — g1 — g2 has two sign changes so G fails (W-4). By Lemma 2.2,
G fails (W-2).

Under certain conditions on T (e.g., if T is an interval or if T
is unbounded), the properties (W-1) and (W-1') are equivalent. This
is the content of the following result.

PROPOSITION 2.5. Suppose that either T is unbounded or inf T
or sup T is an accumulation point of T (in R). Then an n dimen-
sional subspace G of C0(T) has property (W-1) <=* it has property
(W-l')

Proof By Lemma 2.2 it suffices to verify that (W-Γ) => (W-1).
Let G have property (W-Γ). If sup T is an accumulation point of
T or if sup T = °°, then the same proof as given in Claim 4 of
Lemma 2.2 shows that G has property (W-1). If inf T is an accumula-
tion point of T or if inf T — — °°, a similar proof works.

We next give a condition which insures that property (W-1) is
equivalent to (W-2).

DEFINITION 2.6. A function δ: T-> R is called a delta function
if δ is the characteristic function of a point in T. That is, for some
t0 e Γ, δ - Xt09 where χto(t) = 0 if t Φ t0 and χto(to) = 1.

Since a delta function χtQ is continuous iff t0 is an isolated point
of T, C0(T) contains delta functions iff T contains isolated points.
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Observe also that a subspace G of C0(T) cannot contain a delta
function if some feC0(T)\G has a unique best approximation goeG.
(For otherwise, some scalar multiple of the delta function, added
to gQ, would another best approximation to /.) In particular, a
Chebyshev subspace of C0(T) cannot contain delta functions.

PROPOSITION 2.7. Let G he an n dimensional subspace of C0(T)
which does not contain any delta function. Then G has property
(W-l) <=> G has property (W-2).

Proof. It suffices by Lemma 2.2 to show that if G has property
(W-l), it has property (W-2). Fix any integer m, 1 <; m <£ n. We
must show that for each set of points — °° = t0 < tx < < tm — o°
with ti e T (i = 1, , m ~ 1), there exists 0 Φ g e G such that

(a) (-lYg(t) ^ 0 for all t e [tt, ti+1) n Γ (i = 0, 1, •, m - 1)
and

(b) g(tt) = O (i = 1,2, . . - , m - 1 ) .
If m — 1, condition (b) is vacuously satisfied and (a) follows by

property (W-l). Thus we may assume m > 1. What we will show
is that for each integer k, with 1 <^ k <; m — 1, and each set of points
— co = t0 < tL < < tm — co with tt e T (i — 1, , m — 1), there is
QΦ gkeG such that (~iYgk(t) ^ 0 for all t e [tif ti+1) n Γ (i = 0,l, ••-,
w — 1) and ^ ( ί j = 0 (i = 1, 2, - - -, k). Then the function # = ^TO_!
will satisfy (a) and (b). We proceed by induction on k.

Assume first that k = 1. By property (W-l), there exists 0 Φ
g eG such that (a) holds. If git,) = 0, set gt = g and we are done.
If git,) Φ 0, then g{Q < 0.

Case 1. ίi = sup Γ.
Choose g0 e G\{0} such that go(t) ^ 0 for all t e T.

Case 2. t, < sup Γ.
Let τ - inf {t e T\t > ί j . Then t, ^ τ ^ ί2.
We consider three subcases.

2.1. z — ί1#

Choose a sequence (ry) in T, tλ < r y < ί2, such that τό —> tt = r.
Set t̂ > = ti if iΦl and «{'> = ry. Choose g^eG, \\g{j)\\ = 1, such
that ( - W ^ ί ) ^ 0 for all t e [t(j\ t ί ί J n Γ (i = 0, 1, , m - 1). Let
r̂0 be a cluster point of the sequence (g(j)).

Case 2.2. τ = ί2.
Set Fo = — oo and ?€ = ti+2(i = 1, 2, , m — 2). Choose 0 ^ ^0

 e

G such that (-l)*flro(ί) ^ 0 for all ί 6 [ti9 ti+ί] Π Γ (i = 0, 1, , m - 3).
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Case 2.3. t, < τ < t2.
If τ 6 T, let tt — ti iί ί Φ 1 and tx = τ. Choose O ^ ^ e G such

that (-l)VoOO ^ 0 for all t e [tu ti+1) n ϊ7 (i - 0, 1, •.., m - 1).
If r g Γ , choose a sequence (ry) in T with r < ry < ί2 and τό-»r.

Set #> = ί, if i ^ 1 and t[5) = τά. Choose g{j)eG, \\g{j)\\ = 1, such
that ( - W } ( « ) ^ 0 for all ί e [ί{ί}, «&) Π ϊ7 (i = 0, 1, . -., m - 1). Let
r̂0 be a cluster point of the sequence (#(i))

In every case, we have obtained a function gQeG\{0} satisfying
go(t)g(t) ^ 0 for all t e Γ\{ίJ and g^t,) ^ 0. If gfa) = 0, set g, = βr0.
If Λ(*i) =£ 0> t^en firo(ί3) > 0 and set g, = g — (git^jg^t^g^ Since α =
g(tι)/go(ti) < 0, it follows that & satisfies (-l)Vi(έ) ^ 0 for all ί e
[̂ , ίi+i) n T (i = 0, 1, , m - 1), and flrAC*i> = 0- If Λ = 0, then g =

Since G contains no delta functions, there exists a point Fe
such that go(t) Φ 0. Hence

= a[go(t)Y<O

which is absurd. Thus gλ Φ 0 and the proof of the first step k — 1
is complete.

The proof of the induction step is analogous.

REMARK 2.8. Example 2.3 above is of a subspace G which does
not contain any delta function, has property (W-Γ), but not (W-l),
and hence not (W-2), (W-2'), (W-3), or (W-4).

COROLLARY 2.9. Let I be any interval in R and let G be n
dimensional subspace of CQ(I). Then G has one of the following
properties <=> it has then all: (W-l), (W-l'), (W-2), (W-2'), (W-3), (W-4).

Proof. Since / contains no isolated point, Co(/) contains no delta
function.

If / were bounded, then both sup / and inf / would be accumu-
lation points of /. The result now follows by Lemma 2.2, Proposition
2.5, and Proposition 2.7.

We note that when I is an interval, the equivalent properties
(W-l), (W-l'), (W-2), and (W-2') simplify somewhat. For example,
if / is a bounded interval and a = inf (/), b — sup (/), then an n
dimensional subspace G of Co(/) has property (W-2') iff for each set
of points

a = to<t1< . . . < ί.-t < ί» = 6 ,.

there exists g 6 G\{0} such that

(-l)'flr(ί) SO for all ίe[t< f ί<+1]
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(ΐ = 0 , l , • • • , % - ! ) .

3* A characterization o£ property (A-l)*

THEOREM 3.1. Let G be an n dimensional subspace of C0(T).
The following statements are equivalent:

(1) G has property (W-l);

(2) For each feC0(T) which has a unique best approximation
Qo^G, f — gQ has at least n + 1 alternating peak points',

(3) Each feC0(T) which has 0 as its unique best approximation
in G must have at least n + 1 alternating peak points.

REMARK. In particular, if G is "very non-Chebyshev" (i.e., each
feC0(T)\G has more than one best approximation in G), then G has
property (W-l).

Proof. (l)=>(2). Suppose G has property (W-l). Fix any / e
C0(Γ) with PG{f) = {g0} a singleton. If / = g0, any n + 1 points in
T work. Thus we assume / Φ g0. Choose a compact set K in T so
that

\(f-9>){t)\<\\\f-g,\\ for all teT\K.

We define a set of points in T inductively as follows. Let

tλ = min{teK\ \(f - go)(t)\ = | | / - go\\} .

W e m a y a s s u m e ( / — fjro)(*i) = \\f — gQ\\. H a v i n g c h o s e n ti9 w e s e t

t < + 1 - m i n {t 6 K Π [tt9 oo) I ( / - sro)(ί) = - ( / - flro)(ί4)} .

Now either this procedure yields w + 1 points ^ (which clearly satisfy
( — l) i + 1(/ — go)(fi) = 11/ — 0oII) a n d we are done, or this process ends
withmpoints ti9l^m^n (i.e., the set ϋΓΠ[tm, oo)n{ί 6 Γ|(/—0O)(<) =
— (/ ~ 0o)(O} is empty). Thus we assume the latter case.

Set 20 = ~ °° a n ( i m̂ — °° If m > 1 we define additional zt as
follows: for each ί = 1, 2, , m — 1, set

zt = m*x{teKn [ti} ti+1]\(-iY+1(f - ffoXO ̂  0} .

It follows that tt <Ξ •«1 < t< + 1 and so

~ °o = 20 < 2X < < ^m_j < 2;m = oo .

For i = 0, 1, •••, m - 1, let
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M< = max {(- iγ+\f - go)(t) \ t e [zif zi+1] n K}

and M = maxίM* | i = 0, 1, , m — l}(^0). By compactness of K and
the choice of the ί* and zi9 it follows that M < | | / — 0O||.

Since (? has property (W-l), there is OφgeG such that
(-l)i+1g(t) ^ 0 for all t e [zif zi+1)ΠT (i = 0, 1, - - , m - 1). By scaling
# we may assume

If t e T\K, then

i ( / - g* - g)(t)\ £ \(f ~ go)(t)\ + lff(*)l < 4-11/ - 0.
Δ

If t e [zi9 zt+ι) ΓΊ K (i = 0, 1, . , m - 1), then

(-l)'+i(/ - Λ - g){t) - (-l) ί + 1 (/ ~ flro)(t) - (~l)i

<^M+\\g\\<:\\f-gQ\\

and

( - l ) ί + 1 ( / - gQ - g)(t) ^ ( - l ) i + 1 ( / - go)(t) ^ - \ \ f - go\\ .

Thus | ( / - βr0 - flr)(ί)| ^ | | / - flro|| implies that | | / - g0 - g\\ £ \\f-go\\
and hence gQ + g e PG(f) = {#0}> a contradiction.

(2) => (3) is obvious.
(3) => (1). Assume (3) holds and let 1 <̂  m ^ n and -co = ί0 <

*!<•••< ί»-i < ίm = °°, where ί, 6 Γ (i = 1, 2, , m - 1). We show
there exists sre(?\{0} such that (_-l)V0O^O for all t e [ti9 ti+1) Π T
(i = 0, 1, , m — 1). Let Γo = Γ\Γ and for each positive integer
N, let

= {ί6Γ|dist(ί, Γ o )^

if τ0 Φ 0 and TV = Γ if Γo = 0 . It is easy to verify that TN is
a closed subset of R, hence of T, TN c 2V+1, and T = \J? TN.

Thus the sets

[ ^ ] TN (i = 1, 2, - , m - 2)

and
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κNtm - [ίm_lf tm_x + N]nτN

are disjoint compact subsets of T. (KNtQ may be empty for all N
in which case we simply ignore it in the subsequent argument.) By
Urysohn's lemma (or our linearization procedure) there exists functions
fN,i e C0(T) (i = 0, 1, - , m - 1) such that 0 ^ fNΛ ^ 1, fNΛ = 1 on if^,
/*,, - 0 off (U ~ 1/2N, tt+1 - 1/2N) (i = 1, 2, - -, m - 2), Λ f0 = 0 off
(t.-N- 1/N, tL - 1/2N), and /,,._, - 0 off (ί^-l/JV, ί ^ + iV + 1/tf).
Set ΛΓ = ΣSΓoH-l)'/^*. Then fNeC0(T) and /^ has only m - 1 ^
w — 1 changes of sign so fN has at most n alternating peak points.
Thus 0 cannot be the unique best approximation to fN. Choose any
gNePG(fN)\{0}, Then gN must have the same sign as fN on the sets
KNΛ. That is, ( - l ) W ί ) ^ 0 for all 16 KN)i(ί = 0, 1, , m - 1). Let
^ = Wll^li Let βf be a cluster point of (hN). Then βreG, \\g\\ =
1. Since JBΓ^o/1 ( - - , t j n Γ as N-> oof KNiiS[tif ti+1) ΠT (i = 1,2,
•• , m - 2 ) , and ί ^ / l U ^ Π T , it follows that ( —l)*flr(ί) ^ 0
for all t 6 [ί4, ίi+1) Π Γ (i = 0, 1, , m - 1).

COROLLARY 3.2. Lβί G be an n dimensional subspace of C0(Γ)
which does not contain any delta function (e.g., i/ Γ is cm interval
or if G is Chebyshev). Then:

(a) The following statements are equivalent:
(1) G has any one of the equivalent properties (W-l), (W-2),

(W-20, (W-3), or (W-4);
( 2 ) For each feC0(T) which has a unique best approximation

go e G, f — g0 has at least n + 1 alternating peak points;
(3) East feC0(T) having 0 as its unique best approximation

in G has at least n + 1 alternating peak points,
(b) If T satisfies the hypothesis of Proposition 2.5 (e.g., if T

is an interval), and if G is a Chebyshev subspace, then the above
statements are equivalent to

(4) G has property (W-l')
(c) // T is an interval and G is a Chebyshev subspace, then G has

all of the weak Chebyshev properties (W-l), (W-l'), (W-2), (W-2'), (W-3),
and (W-4).

Proof. The proof of (a) follows from Theorem 3.1, Lemma 2.2,
and Proposition 2.7.

The proof of (b) follows from part (a) and Proposition 2.5.

To prove (c), let T be an interval and G a Chebyshev subspace.
Then for each / e C0(Γ), / - PG(f) has n + 1 alternating peak points.
(This follows, essentially, by a result of Bram [2]. It can also be
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deduced just as Remez did in the classical case T — [α, 6]; see e.g.,
[8].) The result now follows from (b).

There seems to be a commonly held belief that statement (2) of
Corollary 3.2 is always valid for Chebyshev subspaces G of C(Γ), if
T is a compact subset of R. The following example shows this to
be false.

33* Example of a one dimensional Chebyshev subspace of
C(T) which fails to have any weak Chebyshev property* Let T =
{1, 2}. Consider the one dimensional subspace G spanned by the
function gλ defined by gx{t) = (—l)f (t e Γ). Then G is Chebyshev since
gx has no zeros. Since gt changes sign, it follows by Lemma 2.2
(when n = 1) that G fails to have any of the weak Chebyshev pro-
perties. Hence by Corollary 3.2(a), some feC0(T) has the property
that / — PG(f) has less than two alternating peak points. (More
explicity, define / e C0(T) by /(I) = 0 and /(2) = 2. Then P0(f) = g,
and / — 0i is of one sign.)

4* A characterization of property (A-2)*

THEOREM 4.1. Let G be an n dimensional subspace of C0(T).
The following statements are equivalent.

(1) G has any one of the equivalent properties (W-2), (W-2'),
(W-8), or (W-4);

( 2 ) For each feCQ(T), there exists a goePG(f) such that f—g0

has at least n + 1 alternating peak points.

Proof. (1) => (2). Suppose G = spanf^, g2, , gn} has property
(W-4) and feC0(T)\G. Assume first that T is a compact interval
[α, &]. Then the result follows from Jones-Karlovitz [6]. Next let
T be an arbitrary interval. Then there is an increasing sequence
of compact intervals Tk such that UΓ Tk = T. For k sufficiently
large, G\T]e will be n dimensional and we assume this to be the case.
Set Gk = G\Tk. Then each Gk has property (W-4) (in C0(T)\TleczC(Tk))
since G does. By the first part, there exist hkePGk(f\Tk) and n + 1
points tkχ < tk% < < tkt%+1 in Tk such that

( 1 ) σk(-iy(f - hk)(tki) = 11/ - hk\\k (ΐ = l f 2, , * + 1)

for some σke{— 1, 1}, where \\h\\k — \\h\\Th = sup t e Γ j k \h(t)\ Since

hk e PGk{f\Tk), we have

for all k.

By passing to a subsequence, we may assume all the σk to be the
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same, say σk — 1. W r i t e hk = Σ?=i akiΰi \ τk-

Claim. sup f c \aki\ < oo (i = 1, 2, , ri).

Indeed, we may assume that dim Gλ — n. Since Tι c Γ^ and
hkePGk(f\Tk) (ft - 1, 2, . . •), we have

| | / - Λ J L < ; | |/ - hk\\k £ 1 1 / 1 1 , ^ I l / H (ft - 1, 2 , . - . . ) ,

so

Now GL is isomorphic to ZJ (the space of all w-tuples of real
numbers endowed with the maximum norm) by the mapping

—>(β ί f A, , βn).

Hence there exists a constant Mn (depending only on n) such that

max

for all real n u m b e r s βlf β2, •• , / 3 Λ . Since hh\Tl = Σit^i^kiθA^ and
P * l l i ^ 2II/H, we obtain

max \βki\ £ AΓJI^IL ^ 2ikfJ|/ | | (k = 1, 2, •)

from which the claim follows.
Using the claim, we can pass to a subsequence and obtain aki - >

cίi (i = 1, 2, , w) for some α* 6 i?. Let g0 = ΣΓ ^iί/i £ G and /ιA =
Σ ? = i α M f t e G . Then hk\Tk=hk and fcfc —>g0. Since hk\T]c=hkePOk(f \ T j ) ,
we have,

| | / - hk\\k £ | | / - fiToll, ̂  | | / - Λ | | (ft - 1, 2, . •) .

On the other hand, we can choose ί0 6 Γ such that | (/ — go)(to) \ =
11/ — ft 11 Since UΓ Tk = T and the Tfc are increasing, we have
t0 6 Tk for all & suίSciently large. Also hk -> g0 implies that for each
ε > 0, there exists kε such that | ( / - hk)(t0)\ ^ | ( / - go)(to)\-e for
all k ^kε. Thus for all ft sufficiently large,

11/ - K\\k 2: | ( / - hk){Q\ ^ | ( / - ft)(ίo)l - ε - \\f - go\\ - e .

Hence | | / - Λ*|| t-> | | / - ft||. Thus for i - 1, 2, . . , n + 1,

! ( / - ft)(ίM)l = l(/ - Λ*)(ίM) - (ft -_ Λ t)(ίM)|

^ 11/ - hh\\k - lift - A * I I * — H I / - ftll,

and hence
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tkieK = j t e Γ | | ( / - ?.)(«)| ^ i - | | / - gt\\)

for & sufficiently large. Since K is compact, by passing to a sub-
sequence, we may assume that £M —> ί, e Γ (i = 1, 2, " , n + l).

By passing to the limit in eq. (1),

( - W - flro)(ί,) - 11/ - f7oll (i = 1, 2, • , w + 1) ,

and t, < t2 < - < ίn+1. If ô ί i W ) , then for any g e PG(f) we obtain

l ( / - f l θ ( * « ) l < l l / - 0 o l l and

= (-1)<(/ - go)(tt) - (-1)'(/
= \\f - 9o\\ - (-iY(f - 9)(Q > 0

for i = 1, 2, , n + 1. Thus g — g0 has w sign changes, contradicting
property (W-4). This shows that goePG(f) and proves the result
when T is any interval.

Finally, let T be any locally compact subset of R. Let IT, / e
C0(IT), and G be as described prior to Lemma 2.2. Since G has
property (W-4) and since each geG is linear, hence monotonic, on
each interval in IT\T, G also has property (W-4). Fix any / e
CQ(T)\G. Then feC0(IT)\G and by the result proved for intervals
there exist goePQ(f) and points tι < t\ < < tn+1 in I T such that

σ ( - l ) * ( / - &)(«;) - | | / - ffolliτ ^ 0 (i = 1, 2, • , n + 1)

for some σe{ — 1, 1}.

Claim. We may assume ?< 6 Γ (i = 1, 2, , w + 1).
If ?< e Γ, set << = ?<. If some ^ ί Γ, then (since f-go = O on ?\Γ) ?<

is in one of the disjoint open intervals Im whose union is IT\T. But
/ — ô is linear on each such subinterval and | ( / — 30)(ti)\ = 11/— SOWIT

imply that f — gQ is constant on Jm. We then replace tt with either
one of the endpoints tt of Im. Clearly, the resulting t4 e Γ, ί2 < ί2 <
. . . < tn + 1, and

σ ( - l ) ' ( / - ^ o χ^) - | | / - gro||/Γ (i = 1, 2, . , ^ . + 1)

which proves the claim.

Since \\f-go\\iτ^ \\?-9\\iτ for all geG and since | |Λ||/ Γ = | |λ | |
for every heC0(T) (because h is linear on each of the subintervals
whose union is IT\T), it follows that \\f - go\\ ^ \\f - g\\ for all
geG. That is, g0 e PG{f), and using the claim,

o{-l)\f - 9o)(Q = 11/ - go\\ (i = 1, 2, - , n + 1) .

(2) => (1). Suppose (2) holds. We will show that G has property
(W-2') We first prove the
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Claim. F o r each set of po int s — oo = t0 < tλ < < tn = oo,
w i t h tt e T (i = 1, 2, , n — 1), t h e r e ex i s t s gr e G\{0} such t h a t

( - l M ί ) ^ O for all te[tiftihι)ΠT

(i = 1, 2, - . . , % - 1), and #(£) ^ 0 for some t e T\{tl9 t2, , t^}.
We c o n s t r u c t t h e sets KN>i(i = 0, 1, , n) a n d funct ions fN e C0(T)

exact ly as in t h e proof of t h e implicat ion (3) => (1) of T h e o r e m 3.1.
T h e n fN has a t most n a l t e r n a t i n g peak point s . Choose gN e PG{fN)
such t h a t fN ~ gN has a t least n + 1 a l te rnat ing peak points. Then
gN Φ 0 and gNfN ^ 0 on each set KN}1 (i = 0, 1, , n). Let hN —
(9N/\\QN\\) a n ( i tet 9 be a cluster point of the sequence (hN). Then
geG, \\g\\ = 1, and (-l)'flr(ί) ^ 0 for all ί e f ί , , t . + 1 )Π T (i = 0, 1, •••,
w - 1). If flr(ί) = 0 for all teT\{tlf t2, •••, ^__J, then for such
t, \hN(t)\ < 1/8 eventually (i.e., for Nlarge enough) and hence |flf^(i)| <
1/4 eventually (since \\gN\\ £2\\fN\\ ^ 2). But if teT\{tut2, •• ,ίw_ 1},
then t e KN>i eventually for some i implies t h a t , eventually,

\fAt) - gN(t)\ ^ \fN(t)\ - \gN(t)\ ̂  1 - ~ = 4
4 4

Thus for some integer No, we have | |/V o — gNQ\\ ^ 3/4. It follows
using the definition of fNo and the above properties of gNo that fNo —
gNo cannot have more than n alternating peak points, a contradiction
to the choice of gN. This proves the claim.

We next show that for each set of points — <^ = t0 < tx < <
£*_._! < tn — co, with tt 6 Γ (i = 1, 2, , n — 1), and each integer fc,
with 1 <; & ̂  ^ — 1, there exists gk e G\{0} such that

(a) (~iγgk(t) ^ 0 for all t e [tif ti+ι) n Γ (i - 0, 1, . . , n - 1), and
(b) flrt(ί4) = 0 (i = l ,2, ••-,&).
Once we have this, it is clear that the function g = gn_x satisfies

(-1)^(0 ^ 0 for all t e [ti9 ti+1] Π T

(ί = 0, 1, , n — 1) and this shows that G has property (W-2') We
proceed by induction on fc. The induction step is similar to the case
k = 1 so we only prove the latter. By the claim, there exist g e
G\{0) which satisfies (a) and g(s) Φ 0 for some s e T\{tlf t29 , ίΛ_J.
If g(ti) = 0, set g, = g and we are done. If g{tλ) φ 0, then g{tx) < 0.

Proceeding exactly as in the proof of Proposition 2.7 we obtain
a function g0 e G\{0} satisfying go(t)g(t)^O for all teTψ,} and 0o(<i)^
0. If flro(<i) = O, set gί = g0. If gQ(tt) Φ 0, then ^ ( ί j > 0 and set
gi = g - ocgQ9 where α - {git^IgM) < 0. Then (-l)Vi(ί) ^ 0 for all
ί e [«„ ί<+1) Π Γ (i - 0, 1, , n - 1), and &(*<) - 0. If ^ - 0, then
(7 = agQ. Hence

0 ^ go(s)g(s) = —[9(s)Y < 0
a
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which is absurd. Thus gλ Φ 0 and we are done.
Example 2.4 above, along with Theorems 3.1 and 4.1, show that

properties (A-l) and (A-2) are not the same in general. However,
there is one important case when they are the same.

COROLLARY 4.2. Let I be any interval in R and G an n dimen-
sional subspace in Co(/). Then the following statements are equivalent:

(1) G has any one of the equivalent properties (W-l), (W-l'),
(W-2), (W-2'), (W-3), or (W-4);

(2 ) For each f e Co(/), there exists gQ e PG(f) such that f — gQ

has at least n + 1 alternating peak points;
( 3) For each f e C0(I) which has a unique best approximation

Qo e G, f — #0 has at least n + 1 alternation peak points;
( 4 ) Each f e C0(I) with PG{f) — {0} has at least n + 1 alternating

peak points.

Proof. Corollary 2.9, Theorem 3.1, and Theorem 4.1.

In the particular case when I is the compact interval [a, 6], the
equivalence of properties (W-2'), (W-3), (W-4), (A-l), and (A-2) was
first proved by Jones-Karlovitz [6].

5* A characterization of property (A-3)*

THEOREM 5.1. Let G be an n dimensional subspace of C0(T).
The following statements are equivalent.

(1) G is Chebyshev and has one of the equivalent properties
(W-2), (W-2'), (W-3), or (W-4);

( 2 ) For each feC0(T) and each g0 e PG{f), f — g0 has at least
n + 1 alternating peak points.

Proof. (1)=>(2). This follows from Theorem 4.1.
(2)=>(1). If statement (2) holds, Theorem 4.1 implies that G

has each of the equivalent properties (W-2), (W-2'), (W-3), and (W-4).
If G were not Chebyshev, G would not be Haar so there would exist
some nonzero gQeG = spanf^, g2, , gn} which vanishes on a set of
n distinct points To = {tlf t2, , tn} of T. We may assume | | # 0 | | = 1.
Then det [&(*/)]? = 0 so there are scalars at not all zero such that
Σ?«i «iflTi(*i) = 0 (i = 1, 2, - , n)9 i.e., ΣΓ«i0(««) = 0 for all g e G. Let
ai — sgn oίi if at Φ 0 and at = 1 if at = 0. Since each tt is a Gδ,
Urysohn's lemma (or our linearization procedure) implies that for
each i = 1, 2, , n, there exist ft e C0(T) and disjoint neighborhoods
Ut of t< such that 0 ^ /, ̂  1, /,&) = 1, /, = 0 off Uif and /,(«) < 1
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for all t Φ tt (see e.g., [3; Cor. 4.2, p. 148]). Let z = Σ ? ^ / * . Then
zeC0(T), z(tt) = σt(i = 1, 2, •••, ri), a n d \z(t)\<l if teT\T0. S e t
/ = s(l - IflU) + ffo Then / e C0(Γ), /(«,) - go{t%) - sfo) = σ, (i = 1, 2,
• , ri), and

<1 if teT\T0

1 if t e To .

Thus | | / — 0011 = 1 and the set of peak points for / — g0 is To. If
geG and | | / - g\\ < 1, then since |/( ί ,) | = 1 for all ί,

sgn g(tt) = sgn /(£<) = z(tt) = σt (i = 1, 2, , %)

so

which is absurd. Thus | | / - g| | ^ 1 = | | / - go\\ for all greG and
hence goePG(f). But f — g0 has only w peak points (viz. the set To).
This contradiction to (2) shows that G must be Chebyshev.

In a result related to Theorem 5.1, Gopinath and Eurshan [4]
essentially proved that an n dimensional subspace G of C0(T) is
Chebyshev and has property (W-4) <=* it has the property (G — K):
For each set of points -co = tQ < tλ < '• < tn_x <tn=°o with tt e
T (ί — 1, 2, , n — 1), there exists geG such that

( —l)*l/(t) > 0 if t e f e U Π Γ

(ΐ = 0, 1, , w — 1), and

Theorem 5.1 can be strengthened in case T is an interval.

COROLLARY 5.2. Let I be an interval in R and G an n dimen-
sional subspace of Co(/). Then the following statements are equi-
valent'.

(1) G is Chebyshev;
(2 ) For each f e C0(I) and each g0 e Pσ(f), f — g0 has at least

n + 1 alternating peak points;
( 3 ) For each f e Co(/) and each g0 e PG(f), f — 0o has at least

n + 1 pβαfc points.

Proof. (1)=>(2). By Corollary 3.2(c), G has all the weak
Chebyshev properties so the result follows from Theorem 5.1.

(2) => (3) is obvious.
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(3)=»(1). This follows exactly as in the proof of (2) => (1) in
Theorem 5.1.

REMARK 5.3. The implication (1) =>(2) in Corollary 5.2, in the
particular case when I — [a, b], is just the classical alternation theorem.
Also, when / = [α, δ], the implication (2) => (1) was proved by Hands-
comb, Mayers, and Powell [5]. We now show that implication (1)=>
(2) fails in general if / is not an interval. Indeed, it fails if one
adjoins a single point outside the interval.

EXAMPLE 5.4. Let T = [α, b] U {c}, where cί [α, &]. Let G =
spanffirj, where ^(ί) = 1 if te[a, b] and gγ(c) = — 1. Then G is
Chebyshev in C(T) since gx has no zeros. But if f(t) = 1, then
PG(f) = 0 and / — PG(f) does not have two alternating peak points.

6* Examples of weak Chebyshev subspaces* There are a
number of important subspaces which are not Chebyshev but are
weak Chebyshev. We give a few examples below.

6.1. (Polynomial Splines). Let T — [α, 6] and fix any fc(^l) points
Si < s2 < < sk in T. For any integer m ^ 0 let

Sm,k = span{l, t, , tm, (t — st)+t , (t — sk)+) ,

where

((t — s)m if t ^ 8

( 0 if t < s .

Sm>k is the n = m + k + 1 dimensional subspace of C[a, b] known as
"the polynomial splines of degree m with k fixed knots." It is known
(see e.g., [7], p. 18) that Sm,k has property (W-3), and thus by Corollary
4.2 has all of the weak Chebyshev properties (W-i) (i = 1, Γ, 2, 2', 3,
and 4) as well as the alternation properties (A-l) and (A-2).

6.2. (Weighted Polynomial Splines). The example in (1) can be
modified as follows. Let T = R and k points sx < s2 < < sk in
T be given. Let w 6 C0(T) be any positive function such that w p e
CQ(T) for any polynomial p (e.g., w(t) = β~<2). Then the n Ξ= m + k + 1
dimensional subspace

where Sm>k is defined as in 6.1, obviously has property (W-3) since
SmΛ does. Thus by Corollary 4.2, S°m,k has all the Chebyshev properties
(W-i) (i = 1, 1', 2, 2', 3, and 4) and the alternation properties (A-l)
and (A-2).



30 FRANK DEUTSCH, GUNTER NURENBERGER AND IVAN SINGER

6.3. (Weighted Chebyshev subspace). Let T — I be any interval
in R and P any n dimensional Chebyshev subspace of C0(T). Let
weC0(T) be any nonnegative function which does not vanish iden-
tically, and set

G = {wp\peP) .

Then since P is Chebyshev, it follows that G is an n dimensional
subspace of CQ(T) having property (W-3), and hence, by Corollary
4.2, all the weak Chebyshev properties (W-i) (i = 1, Γ, 2, 2', 3, and
4) as well as the alternation properties (A-l) and (A-2).

6.4. Let T = N denote the set of natural numbers (so C0(T) = c0)
and let any n points kγ < k2 < < kn in T be given. Define gt e cQ

by

if t = kt

0 otherwise

(ΐ = 1, 2, , n). Then G = span{^, g2, , gn} is an n dimensional
subspace of c0 which is easily seen to have properties (W-l) and
(W-2). Thus by Proposition 2.5, Lemma 2.2, and Theorems 3.1 and
4.1, G has all the weak Chebyshev properties (W-i) (ί = 1, 1', 2, 2', 3,
and 4) and the alternation properties (A-l) and (A-2).

We note that none of the above four examples is a Chebyshev
subspace in general.

7. A generalization* We can give the following generalization
of the equivalence (1) <=> (3) of Corollary 5.2. In particular, it provides
another characterization of Chebyshev subspaces in CQ(T) for certain
T (including T metric). However, unlike Haar's characterization
concerning the number of zeros of elements of the subspace, our
characterization is not intrinsic.

THEOREM 7.1. Let T be any locally compact Hausdorff space
containing at least n + 1 points and let G be an n dimensional sub-
space of C0(T). If each point of T is a Gδ (e.g., if T is metric), or
if each nonzero element of G has only finitely many zeros, then the
following statements are equivalent:

(1) G is Chebyshev;
(2) For each feC0(T) and each goePG(f),f — 9o has a t ^east

τt + 1 peak points.

The proof of the implication (2) => (1) is similar to the proof of
the implication (2) => (1) of Theorem 5.1. The implication (1) => (2)
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is well-known and due, for compact T, to Remez (see e.g., [8]).
It is worth noticing that this characterization of Chebyshev spaces

is no longer valid in general if both the conditions on T and G (viz.
(i) each point of T be a Gδ, and (ii) each nonzero element of G have
only finitely many zeros) are dropped. To see this, let βR denote
the Stone-Cech compactification of R and consider the space T =
βR\R. It is well-known that T is a compact Hausdorff space in
which no point is a Gδ (see e.g., [9; p. 150, prob 112]). A simple
induction shows that no finite subset of T is a Gδ. Thus each / e
C(T) has an infinity of peak points (since the set of all peak points
is a Gδ). By Urysohn's lemma there exists a nonzero geC{T) which
has a zero. Thus G — span {g} is not Chebyshev, but for each / 6
C{T) and g0^Po(f)t f — 9o has infinitely many peak points.
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