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The concept of genus of an invariant, closed set Aina
paracompact free G-space F is introduced for any compact
Lie group G and the general result that G-genus A = caty A*
is proven where B = E/G, A* = E/G and cat is short for
Ljusternick-Schnirelman category. As a special case, the
concept of genus (Krasnoselskii) coincides with the notion
of category (Ljusternik-Schnirelman) as employed in a real
or complex Banach space.

1. Introduction. The Min-Max prineiple in critical point theory
as introduced by Ljusternik-Schnirelman [6] is based on the concept
of category of a set X in an ambient space B. Krasnoselskii [5]
and others [9], [1], employed the concept of genus instead of cate-
gory. For example, consider the following setting. Let E denote
a Banach space and observe that Z, = {—1, 1} acts freely on £ — 0
by scalar multiplication. Let Y denote the closed invariant (sym-
metric) subsets of E — 0. Furthermore, let B= FE — 0/Z, and for
Aecl, set A* = A/Z,. Then,

is defined to mean that there exist &k sets A, ---, 4, in 2 such that
A = UA, and for each 7, A} is contractible to a point in B and %k is

minimal with this property (k = «, allowed). Thus the function v
given by

v(A) = caty A*

classifies the elements of X.
Alternatively, following Krasnoselskii [2], the statement

genus A=k

is defined to mean that there exists an equivariant (odd) map f: A —
R* — 0 and k& is minimal with this property (k¥ = - means that there
is no equivariant map f: A — R* — 0, for any finite k and, as usual,
R* is Buclidean k-space).

REMARK 1.1. Actually this concept of “genus” was introduced
and studied earlier by Yang [11] under the name “B-index”. In
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fact, genus A = B-index + 1.
The function v given by

v'(A) = genus A

also clagsifies the sets in Y. Our objective in this note is to verify
that these classifications are identical in general, i.e.,

(1) v(A) = caty, A* = genus A = 7¥'(4) , AeclX .

A special case of (1) for compact A’s is contained in Rabinowitz |9].
We will verify (1) in a very general setting as follows.

Let E denote any contractible paracompact free G-space where
G is a compact Lie group. Let Y denote the closed, invariant sub-
sets of K and set B = E/G. Then for AcY, cat; A* is defined as
before, where A* is the orbit space A/G. Now, set G-genus A =k
if there is a G-equivariant map

I
(2) fifdA— GoGo---0@G, (k-fold join |7])

and % is minimal with this property.

THEOREM. For AeY we have
(3) cat, A* = G-genus A .

Note that (1) is (in the case of infinite dimensional Banach spaces)
a corollary of (3) by taking G = Z, and observing that the k-fold
join of the O-sphere S° is just S*' which is the unit sphere in R*.
The corresponding result to (1) for complex Banach spaces is obtained
by taking G = S', unit circle of complex numbers of norm 1. We
should also remark that the idea of using (2) for an “index theory”
appears briefly in [2].

2. Preliminaries. Throughout G will denote a compact Lie
group and .# will denote the category of free paracompact G-spaces.
An object X €.# may be identified with the principal bundle p: X >
X/G, where p is the natural projection to the orbit space X/G.
Hence, the general theory of principal bundles over a paracompact
base applies (see [4]). We will also find the following definitions
convenient.

DEFINITION 2.1. A free G-space Y e.%# is called a G-ENR
(Euclidean Neighborhood Retract G-space) if

(a) there is a real representation @: G - > O(n) of G as orthogonal
matrices for some n;
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(b) there is an equivariant imbedding A: Y — R* of Y in R-,
L.e., h(gy) = P(9)h(y);

(¢) there is an invariant neighborhood U of f(Y) < R” and an
equivariant retraction of U onto f(Y), i.e., there is a map r: U —
R(Y) such that »(u) = u when we f(Y) and r(@(g)u) = @(g)r(u).

PROPOSITION 2.2. Let Xe.#, A a closed invariant subspace of
X and Y a G-ENR. Then any equivariant map f: A— Y has an
equivariant extension f: V— Y, where V is an invariant neighbor-
hood of A in X.

Proof. We assume without loss ttha YC R* and G < O(n).
Then, employing the Tietze-Gleason Extension Theorem [8], there is
an equivariant extension F: X — R*. Let U denote the invariant
neighborhood of Y which admits an equivariant retraction »: U — Y.
Then, if V =+ U), f=ro(F|V)is the required extension: V — Y.

REMARK 2.3. The compact Lie group G is a G-ENR [8]. In
fact, every compact smooth G-manifold is a G-ENR [8]. Hence, the
neighborhood extension theorem (Proposition 2.2) applies for maps
into these spaces. Palais [8] defines a G-ANR as a space Y which
satisfies Proposition 2.2 for normal spaces X, so that every G-ENR
is a G-ANR.

We also recall the notion of join. Let Y, Y, ---, Y, denote
G-spaces and consider the space

(4) IXY)XxUXY)Xx - --» XxUAXTY,
a point of which is designated by
(8) Yy Yoy -+ 5 G -

Let J denote the subset of (4) consisting of points (5) with the
added condition that 3¢; = 1. Define an equivalence relation ~ by
setting

Yy Cly -5 Ghs) = (YL, &Yy -, Yilh)
if t; = ¢t; for all j and y; = y; whenever ¢; = 0. Then we set
(6) Yio Yo ri0Y,=dJ/~
employing the identification topology. The action
G X (Yo-0Y)—> Y, 0-.:0Y,

given by
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9l - -+, Ll = [tgyy, -+ -, tgyil
is continuous whenever the Y,’s are compact [7].
LEMMA 2.4. Suppose Y 4s a free G-space, with Y R" and
G cO(n). Then, there is an equivariant imbedding
i Y— R*
with the additional property that y, = y, implies fly,) and f(y,) are

independent, i.e., they do not lie on a line thru the origin.

Proof. Set f(y) = (y, l¥|]"), veR", ||y|| = norm y.
This lemma is used to prove the following proposition which is

essentially Lemma 2.7.9 of [8].

ProPOSITION 2.5. If Y, ---, Y, are compact G-ENR’s, so is the

k-fold joim
Yo---0Y,.

Proof. We need only show this for # = 2. Clearly Y,0 %, is
compact. We may assume without loss, that Y, is a closed G,-sub-
space of R, where G,CO(p) and G, is isomorphic to G, say by
@,: G, — G,. Similarly, we may assume that there is an isomorphism
@,: G— G, 0(q) and Y, is a G,subspace of R’.

Then, there is a natural equivariant map 7: Y,o Y,— R*@ R*
given by

77: [tlyh tzyz] — tlyl @ tzyz
where G acts on R* @ R? via the diagonal action

9y, ¥2) = (PDYs PAD)Ye) -
Now, if we use Lemma 2.4 we may also assume that distinet points
¥, Y. of Y, are independent vectors and similarly for Y,. Then,
if
6.9, D Ly, = Ly D ty.
we have ty, = tiy: and ty, = t;y.. This forces
L.y, Lyl = [ty tiyi)
and 7 is injective, hence an imbedding. Now, suppose
02U —Y, =1, 2

are invariant retractions where U,, U, are invariant neighborhoods
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of Y, and Y, in R®, R’ respectively. Now, let U denote the union
of all lines L(w,, u,), ;€ U,. Thus a point w ¢ U has the form

a - tu, + tu,, —oo Lt < oo,
Set

"‘01(71/1) ’ if ¢ =0
o((L — Du, + tu,) = {1 — Dou(w,) + o), if 0=<t=1
odu), if t=1.

0: U—-n(Y,oY,) is an equivariant retraction and hence Y,o 7Y, is a
G-ENR.
The following proposition uses the obvious fact that L-S category

is subadditive, i.e., if Y= Y, U Y,C M, where Y, are closed in M,
1+ =1, 2, then

cat, Y < cat, Y, + cat, Y,.
PrOPOSITION 2.6. Suppose Y,, Y, are compact invariant sub-
spaces contained in a free G-space E, and let Y = Y, Y,. Then,
caty. Y* < cat,; Y + cat,; Y5
where A* = A/G.

Proof. Y,oY, splits into two pieces

X = v, tywl t = 3

X, = {w, towd t = 2

with Y, a strong deformation retract of X, (equivalently). Thus
Y* is a strong deformation of X} and since

caty. ¥* =< caty; XI + cat,; X7
we have the desired result.

k

—t—

COROLLARY 2.7. If Y =Go---0G, then cat,. Y* < k.

The next proposition establishes that G-genus is also subadditive.

ProPOSITION 2.8. If Ye F and Y=Y, U Y, where Y, ahd Y.
are closed invariant subspaces, then

G-genus Y < G-genus Y, + G-genus Y, .
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Proof. Suppose G-genus Y, = k, and G-genus Y, =k,. Let
kl k‘.}

—

H =Go- oG, Ho=Go---oG

and observe that H, and H. are compact G-ENR’s (Proposition 2.5).
Suppose

.fi: Yz H b /l: = 1, 2
are equivariant maps. Then f, extends to an equivariant map
fe U — H,, 1=1,2

where U, is an invariant open set containing Y,. Select an
equivariant partition of unity @,: Y --]0, 1] so that

Y.cor(0, 1)U, i=12.
Theh, define an equivariant map
£ Y — HoH,
by setting
S = P fiy), ) ()]

as the result follows.
k
ReEMARK 2.9. Let us recall that if we set YV, =Go.-.0G and
Yi = Y,/G, we have natural imbeddings

G————-—)...———-——)Yk ——-—>Yk'§l—_——)”'
* Ylf Yl:kn

and the direct limit yields the Milnor universal bundle [7] (Es pg, Be)
for G. Now, if E is a contractible, paracompact free G-space, and if
E/G = B, then (Z, p, B) is also a universal boundle for G-bundles
over paracompact spaces [3].

As we have seen, G-genus is subadditive but the proof was
more substantial than the corresponding trivial result for L-S
category. Just the opposite occurs for the “monotone” property.
If : X - Y is an equivariant map (in .& ), then it is immediate
that

G-genus X < G-genus Y .

However, the corresponding result for L-S ‘category requires some
details-——and makes use of the classification theorem for G-bundles.
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PropPOSITION 2.10. Suppose X, and X, are closed invariant sub-
spaces of paracompact free G-spaces E, and E,, respectively. Then,
if p: X, — X, is an equivariant map and if

Xr=X/G, X'=X/G, B =ZE|G, B =RkG,
then
caty X < caty, X .
Proof. The bundles (E,, p;,, B;) i =1,2 are universal bundles
and hence we have the following diagram of bundle maps

’112 (44

X1 > Xy Ez El

d

Xy - Xy —» B,— B,

¢

where @ is given, 4, is inclusion and « exists via the universality
of (&, p, B).

Now, suppose catz X; =Fk < co. There, X} admits a closed
cover KF¥, ---, Kf of sets contractible in B, to a point. If we set
AF = p~'(K¥), we have a closed cover {Af, ---, A¥} of X} and

@o1,0(P|A*) ~ constant (in B)) .
However, since (F,, p, B,) is universal, we have
Qo 7/72° P ~ 771

where i;: X; — E, is inclusion. Thus, each A} is contractible to a
point in B, and

caty X < catp, X7 .
3. Category vs genus.

THEOREM 3.1. Let E denote a contractible, paracompact free G-
space and let X denote the closed invariant subspaces of K. Then
if B=E|G and A* = A|/G, we have

cat; A* = G-genus 4 , Aecl .

Proof. (a) We show first that cat; A* < G-genus A. Suppose
that G-genus A = k < . Then, we have an equivariant map

k

—_——

fifA— Y =Go:---oGCE,.
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But then, using Proposition 2.10 and Corollary 2.7
caty A* Scaty, Y* Zcat. Y* =k

Thus,

caty A* < G-genus A .

(b) Now, suppose caty A* = k < o. Then,

A* = AfU - UAf
where each A} is closed and contractible in B. Now, since G-genus
is subadditive (Proposition 2.8) we have

k
G-genus A < 3, G-genus A,
=1

where A, = p*(4)), py: A — A/G = A* the natural projection. Since
each A} is contractible to a point in B, the bundle (A, p,, A*) is a
trivial G-bundle and hence we have an equivariant map

fidi— G
so that G-genus A, =1, 1 =1, --., k. This proves that
G-genus A £ k = caty A*

and the proof is complete.
There are some noteworthy examples:

3.2. Let <# denote an infinite dimensional Banach space over
the reals R. Let G = Z, = {—1, 1} act on <Z by scalar multiplica-
tion and let Y denote the closed invariant subsets of K = . — 0.
Define the real genus of Ae¢ X by

genus, A = Z,-genus 4 .
Then,
genusy, A = caty A*

where B=FE/Z, A*=A/Z,. As we have already observed, genusy A=
k < <o is equivalent to saying that there is an equivalent (odd) map
fiA— R*¥ — 0 and k is minimal with this property, so that genusg
is ordinary genus in the sense of Krasnoselskii [5].

3.3. Let <#Z denote an infinite dimensional Banach space over
the complex numbers C. Let G = S!, the complex numbers of norm
1. Then G acts freely on K = <% — 0, again by scalar multiplica-
tions. Let X denote the closed invariant subsets of E and define
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the complex genus of AeX by
genus¢ A = S'-genus 4
then,
genuse A = catz A*

where B = E/S', A* = A/S'. We also mention here that genus; 4 =
k < « 1is equivalent to saying that there is an equivariant map
fi A— C* — 0 and k is minimal with this property.

Another consequence of Theorem 3.1 is the following result
which asserts the independence of L-S category on the ambient
Banach space.

COROLLARY 3.4. If <Z, © = 1, 2 are real {(complex) Banach spaces
(not mecessarily infinite dimensional) and A, C <%, — 0 are closed

invariant subsets admitting an equivariant homeomorphism @: A, —
A,, then

caty Al = catp, Af

where B, = &, — 0)]Z,(S").

Proof. If both Banach spaces are infinite then
caty A = G-genus A, = G-genus A, = cat, A .

To complete the proof it suffices to prove the following lemma.

LeMMA 3.5. Let <% denote an infinite dimensional Banach space
over R or C and let L denote a finite dimensional subspace. Let
A denote a closed invariant set in L —0. If C= (L — 0)/G, B=
(F — 0)/G, A* = A|G, where G = Z, or S', then

cat, A* = cat, A* .
Proof. We consider only the real case. Wemay identify L with

R" and if Z,-genus A =Fk, then k <n and we have a diagram of
bundle maps

A ¢ Sk‘l i R Sn—l '7 > S'n

N

A* -2, Rp+RP'—> RP"

where @ is the equivariant map obtained from the fact that Z,-genus
A =k and 1 is inclusion. RP** is the union of k contractible closed
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sets, K¥, ---, Kf and hence if we set A = @ '(K;), we have that
each map

i0(p|AF) ~ constant (in RP*) .

We may assume without loss that A, = ¢ '(4F)cS** and is a
finite subcomplex of dimension <n — 1. Since (S*, P,, RP") is n-
universal [10]

j¥o1o@|A¥ ~ j;: A¥ C RP™ .

Thus, A is contractible in RP". This forces Af to be a proper
subset of RP™! and hence A} is deformable in RP*' to RP"
Repeating the above argument then forces Af to be contractible in
RP** and so

cato A* < k = Z,-genus A = caty; A* .

Since the inequality caty A* < cat, A* is obvious the lemma follows
and the proof of Corollary 3.4 is complete.
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