Pacific Journal of

Mathematics

ON THE ZEROS OF CONVEX COMBINATIONS OF
POLYNOMIALS

HARRIET JANE FELL




PACIFIC JOURNAL OF MATHEMATICS
Vol. 89, No. 1, 1980

ON THE ZEROS OF CONVEX COMBINATIONS
OF POLYNOMIALS

H. J. FELL

Given monic nth degree polynomials P,(z) and P,(z), let
Puz)= (1 — A)Py(2)+APi(z). If the zeros of P, and P, all lie
in a circle € or on a line L, necessary and sufficient con-
ditions are given for the zeros of P, (0<A<1) to all lie on &
or L. This describes certain convex sets of monic nth degree
polynomials having zeros in € or L. If the zeros of P, and
P, lie in the unit disk and P, and P, have real coeflicients,
then the zeros of P, (0<A<1) lie in the disk |z] <cos(z/2n)/
sin(r/2n). A set is described which includes the locus of zeros
of P,(0<A<1) as P, and P, vary through all monic nth degree
polynomials having all their zeros in a compact set K. When
K is path-connected, this locus is exactly the set described.

Given polynomials P,z) and P,(z), let P,(z) denote the poly-
nomial:

P,(z) = (1 — AP(z) + AP(z) .

P, is defined for any complex value of A and the zeros of P,(z) are
continuous functions of A. In particular, if A is varied through
the reals between 0 and 1, the locus of zeros of P,(2) is a network
of paths in the plane starting at the zeros of P,(2) and terminating
in the zeros of P(z). If the degree of P, is higher than that of P,
then some of the paths of zeros must tend to infinity as A tends
to one. It is the aim of this note to describe these loci of zeros
when P, and P, are monic, have the same degree and are constrain-
ed to have their zeros on a circle, on a line or in a disk.

First, let P, and P, be real and have their zeros in S'= {z ¢
C:|z| = 1} where C denotes the complex numbers. The following
lemma gives a necessary and sufficient condition for the locus of
zeros of Pyz). (0 < A<1) to be contained in S*.

LEMMA 1. Let Py(z) and P(z) be real monic polynomials of degree
w with their zeros contained im S'— {—1,1}. Denote the zeros of
Py2) by w,, w,, ---, w, and of P(z) by z,, 2, -+, 2, and assume:
w,#z; 1=t,j=n)
and
0 <arg(w,) < arg(w;) <2z
0<arg(z,)<arg(z;)<2r (1=2i<j=n).
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Let «, be the smaller open are of S* bounded by w, and
20 =1, <+, m). Then the locus of zeros of P.3z) 0ZAL1) s
contained in S* if and only if the arcs «a, are disjoint.

Proof. If P, and P, are fixed, then for each zecC such that
P,z) + PJ(z) there is a unique value of A = A(z) such that P, (z) = 0.
The function A(z) is given by:

"A@)= R = Lo o 1
Py) — P(z) ;_ _P) _(e—2) - (2—2)
Py(z) (2 —w,) - (z—wn)
if Pyz) + 0.

First assume that P,(z) has all its zeros in S' for 0 < A< 1.
When A = 0, the zeros of P,(z) are the w,. Perturbing A from 0
to 1 will give a trajectory of zeros eminating from each w,. Each
trajectory will pass through a 2z, at A =1. Equation (*) implies
that no z can be a zero of P,(2) for two different values of A (un-
less P,(z) = P,(2) = 0 which is not the case here). Two trajectories
can intersect only at z’s which are multiple zeros of P, for some
A. The set of all z which are multiple zeros of P,(z) for some
AeC is a finite set, as this is the set of z<C for which P,(z) and
P/(z) are both zero. P;(z) = 0 implies A(z) = P,(2)/(P;(z) — P{(z)) if
Pj(z) + P/(z) and equating this formula for A(z) with that in (*)
gives a polynomial that 2z must satisfy if it is a multiple root of
P,(z) for some A. Hence, two trajectories can cross but not coin-
cide over a curve. If the trajectories are constrained to a circle,
they can only intersect at their endpoints. The = disjoint open
arcs covered by these trajectories minus their endpoints are clearly
the arcs a;,.

Now assume that the ares «a, are disjoint. Let 6, denote the
angle of the arc «,. Consider the quotients

—Rr— 2
Z'—wi

q;

and

2~ RByti-y R — Z;
2= Wpt1-1 z2— W;

Qunt1—i =
If zeS' and z¢ a, U a,.,_,; then:
7]
arg(q;,) = ==+
2(q,) 2

while
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arg(gui-)=TF % .
2
Hence arg(q.9,:1-:) =0 and ¢,q,.,-; is a positive real. If zeS'—
U, @, then P(z) P(z) is positive and except at the finite number
of zeS!' where P,(z2) = P(2), A(z) is real with either A(z) <0 or
A() > 1. If zeca, for some %, then for j +# 14, ¢;q,+,—; is a positive
real. On the other hand,

wﬂm=i(ﬂ—%>

while
— 49
arg(gps-s) = £+ .
2
In this case arg(q.q,...—;) = & 80 P(2)/Py(z) is negative and A(z) is
real with 0 < A(z) < 1.

A(z) is a continuous real-valued function of z on each arc «,.
A(z) takes on the values 0 and 1 at the endpoints w, and z; of «a;.
A(z) must then take on all values between 0 and 1 on each arc «;.
That is, for each A(0 < A =1) there is a zero of P,(z) in each arc
;. This accounts for all n zeros of P,(z) so there ean be no zeros
of P,(z) outside S'.

Note that a similar lemma holds for polynomials P, and P,
having their zeros in any circle whose center is on the real line.

THEOREM 1. Let & be any circle whose center s on the real line
and let v, be open arecs in € N{z{lmz >0} for i=1,---, k. The
set of (real) monic polynomials of degree 2k with zeros z,7%, ---,
2., 2 Where z;6v, (1 =1, ---, k) 18 a convexr set of polynomials if
and only if the arcs v, are disjoint.

Proof. All that remains is to consider what happens when P,
and P, have zeros in common. In this case,
Pyz) = Qz)Py(z) ,
P(z) = Q(z)P(2)
and
P,(z) = Q@)(A — A)Py2) + AP(2))

where P,(z) and R(g) satisfy the conditions of Lemma 1. This lemma
applied to (1 — A)P,(z) + AP,(z) implies the theorem.

COROLLARY 1. Let P, P, and «, be as in Lemma 1. For each
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zeS'. Let n(z) = card{a,;|zca;}. For all zeS' such that Pyz)+
P(z), z 1s a zero of P,(z) for some real value of A = A(z) and
0= ARR) 1 if and only if n(z) is odd or z is a zero of P, or P.

Proof. This follows easily from the proof of Lemma 1.

The techniques used in the proof of Lemma 1 applied to poly-
nomials whose zeros lie on a straight line give the following result.

THEOREM 2. Let I;(j =1, ---,n) be open intervals in a line
LS C. The set of monic polynomials of degree n having zeros
g =1, ---,n) where {;€1I; is a convex set of polynomials if and
only if the intervals I; are disjoint.

Proof. Let Py(z)and P,(2) have zeros w,, w,, -+, w, and 2,, - - -, 2,,
respectively, where w; and #z; are in L(j =1, ---, »). Assume that
L is directed and that the zeros w; and z; are ordered in this direc-
tion. Define intervals «; and quotients ¢; as in Lemma 1 and its
proof. If P, and P, are monic and w; # 2;(1, § = 1, ---, n) then

arg(q,) =0 or 27 zelL — a
arg(q,) =7 or —7m zZeEaq,.

The arguments of Lemma 1 imply that the zeros of P,(0< A<1)
are contained in L if and only if the intervals «, are disjoint and
the theorem follows.

Theorem 2 is similar to a result of N. Obreschkoff [2] which
states: Let P(x) and Q(x) be two polynomials without common zeros
whose degrees differ by at most one. A necessary and sufficient
condition that P and @ have only real zeros which separate each
other is that the equations aP -+ bQ = 0 have real zeros for all
real @ and b. In the proof of Theorem 2, the zeros of P, and P,
need not separate each other for P,(0 < A <1) to have all its zeros
on the line L. The zeros do, however, need to be “paired” which
is the condition that the invervals a, are disjoint. Theorem 2 can
be restated in the flavor of Obreschkoff as follows.

THEOREM 2. Let P, and P, be monic polynomials of the same
degree. A mecessary and sufficient condition that P, and P, have
only paired zeros lying on onme line L is that the polynomials P,=
(1 — AP, + AP, have all their zeros on the line L for A real,
0<ALL

Lemma 1 is essentially Theorem 1 stated in this form. Theorem
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3 (below) can also be so formulated.

In Theorem 2, the polynomials P, and P, are not required to be
real and there was no need of the symmetry obtained by having
complex conjugate zeros. As linear transformations take circles into
lines, there should be a version of Theorem 1 that does not require
P, and P, to be real.

THEOREM 3. Let = be a circle in the complex plane and let

v, =1, -+, n) be disjoint open arcs in . Let z,€% — U, 7.
Then for any w,eC, w, # 0, the set of polynomials P having zeros
2t =1, ---, n) where z,€v, and satisfying P(z,) = w, 18 a convex

set of polynomials.

Proof. A transformation of the form

w(z):a<zz:§>

will take a given circle through 8 and ¢ onto a line, sending g8 to
the origin and 6 to the point at infinity. The inverse of this trans-
formation is given by

2(w) = 5(1"_‘“‘“&/2) )

w—

If P(z) is the polynomial, P(z) = 2" + a,-2" '+ -+ +az + a, then
Plot = a5 (L GBONY (5 (2= B0)) g,

w— w— A
=1 a5vw — aBlo)y - +ad(w — Bl w — ay
(w — a)
4 oaw — )= —2 Q) .
(w— a)

Q(w) 1s a polynomial with leading coefficient P(§) and P(z) = 0 if
and only if Qw(z)) = 0. Take 0 =z, and ¥ to be the given circle.

If P, and P, are polynomials in the set described in the state-
ment of this theorem, let @Q,, @, and @, be the polynomials associat-
ed with P, P, and P, by theabove. Q, = (1 — A)Q, + AQ, and the
proof of Theorem 2 applies to @, as @, and @, have the same lead-
ing coefficient. P,(0 < A £1) has zeros in the arcs v, and P,(2,) = w,
so P, is in the set described.

REMARK. Theorem 3 is not stronger than Theorem 1. Take,
for example, Py(2) = 2° + z + 1land P(2) = 2* — z + 1 then Py(z) = P(z)
for any zeS.



48 H. J. FELL

The results presented so far show, in particular, that if P, and
P, are monic real polynomials of the same degree having zeros in
S*' or R' then any convex combination P, of P, and P, will have
all its zeros in S' or R! if and only if the zeros of P, and P, are
paired. There remains the question of where the zeros of P, must
lie in general. A special case of a theorem of J.L. Walsh ([1] p. 77)
says that if P, and P, are monic polynomials of degree n with all
their zeros contained in the disk {zeC:|z| <1}, then all the zeros
of P,(0 = A<X<1) are contained in {z€C: |z| < 1/sin(x/2n)}.

This bound on the moduli of the zeros of P(0<A<1) is
optimal. If |z| = 1/sin(x/2n), construct the lines through z which
are tangent to the circle S' and let w, and 2, be the points of tan-
gency. Then 2z will be a zero of P, if P,=(z— z)" and
P, = (z — w)". If, however, P, and P, are real polynomials there is
a slightly smaller bound on the moduli of zeros of P,(0< AL ).

THEOREM 4. Let P, and P, be real monic polynomials with
their zeros contained in the wunit disk {z€C:|z|<1}. Then the
zeros of P, 0= A<1) are contained in the disk

. cos(z/2n)
{z eCilzl = sin(ﬂ:/Zn)} '

Proof. Let the zeros of P, and P, be denoted by z, 2, -+, 2,
and w,, w,, -+, w, and assume that if z,(w,) is not real thenz,,, ;=
Zd{ W1 = Wy). Let ¢, =& — 2)/(w— w,). As in the proof of
Lemma 1, z is a solution of P, for 0 < A <1, if and only if

arg(qq, --- q,) = © + 2kr for some keZ.

The following two lemmas show that |arg(q.q,:;-;)| is maximal for
|z| fixed and greater than 1 when z is pure imaginary and {z,, w,} =
{~1, +1} = {z;, w;}. In this case

larg(q,)| = 2 arctan-l— s

2]
if |z]| > cot(x/2n) then 1/|z| < tan(zx/2n) and

0 <arg(q, - - ¢.)=2n arctan-[—-l-l— <2m arctan(tan—zf% ) =7
2

which is a contradiction.
LEMMA 2. Let a and b be two points on a circle of radius 1

with center ¢. Let p be at distance r > 1 from ¢, then angle apb is
maximal (minimal if negative) when angle acp equals angle pcb.
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LEMMA 3. Let a and b be two points on a circle or radius 1
with center ¢ and let p and p’ be the two points on the perpend:-
cular bisector of the segment ab at equal distances from c. Then
angle apb + angle b’ a is maximal (minimal if megative) when ab
is a diameter of the cirele.

To prove these two lemmas, I had to resort to the Law of
Cosines and taking derivatives. The calculations are straightforward
but tedious so I omit them here.

The following result shows what happens when the circle is re-
placed by a given compact set. The result is essentially the same
as a theorem due to Nagy and generalized by Marden ([1] p. 32),
though they state their results only for polynomials having their
zeros in a given convex set.

Let KS C be compact. Given ze€C, there is a minimal closed
sector with vertex z that includes K. Let (K, z) denote the angle
of this sector. 0<L6(K,2)<2r (zcC).

THEOREM 5. Let K< C be compact. The locus of zeros of P,
(0<AZ1)as P, and P, run through all nth degree monic poly-
nomials having all their zeros in K is included im the set

S(K, n/n) = {zeC|0(K, 2) = w/n} .

If K 1is path-conmected, this locus is exactly S(K, m/n).

Proof. Let g2 =1, ---, n) be defined as in the proof of Lemma
1. If 0<8(K, z)<m/n then 0 =< arg(q; --- ¢;) <« and z cannot be a
zero of PO AL,

If K is path-connected and 6(K, z) = n/n there exist 2z, and w,
in S such that arg((z—=z)/(z—w))==xn/n. z is a zero of a
P(0=<AZ1) when P(z) = (z — z)* and P,(2) = (z — w)".

Finally, we return to polynomials having their zeros in a line.
The following result is stated for the interval [—1, +1] in R but
it generalizes easily to polynomials having their zeros in any line
segment in C.

COROLLARY 2. If P, and P, are monic nth degree polynomials
having all their zeros in [—1, +1] then the locus of zeros of
P,0=< A1) is included in the union of the two disks with dia-
meter cot(mw/2n) + tan(z/2n) whose boundaries pass through the points
—1 and +1.

Proof. Observing that an inscribed angle on a circle is meas-
ured by half the arc it subtends shows that S(—1, +1], #/n) is the
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union of the two disks deseribed.
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