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LOCAL 4 SETS FOR PROFINITE GROUPS

M. F. HUTCHINSON

Let £ be a subset of the dual G of a profinite group
G. It is shown that if £ is a local 4 set then the degrees
of the elements of & must be bounded. It follows that G
contains an infinite Sidon set if and only if G has infinite-
ly many elements of the same degree. This characterisa-
tion is the same as one previously obtained for compact
Lie groups.

Preliminaries. Let G be a compact group with normalized
Haar measure \s. For p€][l, <[ the Banach space of pth power
integrable complex-valued functions on G is denoted (L”(G), ||-ll,)-
The dual object G of G is taken to be a maximal set of pairwise
inequivalent continuous irreducible unitary representations of G.
For each o€ G let d, be the degree or dimension of the representa-
tion space of o and let X, denote its trace. The Fourier transform
of e LYG) is the matrix-valued function 7 on G defined by

o) = | f@otir)  (@ed).

If E is a subset of G let Sy(G@) denote the set of all trigono-
metric polynomials on G whose Fourier transforms are supported
by just one element of E. For pell, oo call E a local A4, set if
there exists a positive constant & such that

Il = &A1

for all feS(G). Call E a local central A, set if there exists a
positive constant £ such that

Xl = £llZ, 1L

for all 0 € E. Further, E is a local A set if there exists a positive
constant & such that

WAl = £p I f1l

for all feSg(G) and all pe]2, «[. A local 4 set is local 4, for
every pell, «<[. See §37 of [4] for a general introduction to the
theory of lacunary sets.

If G is profinite and {N,}... is a neighborhood base at the
identity consisting of open normal subgroups of G then each ge @
has kernel containing some N, by Lemma (28.17) of [4]. Thus we
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may write

G = U (G/N.Y
if we identify a representation of a quotient of G with a represen-
tation of G. We say G is tall if for each positive integer = there
are only finitely many elements of G of degree n. Structural char-
acterisations of tall profinite groups are given in [7]. We will show

that a profinite group G admits an infinite (local) Sidon set if and
only if G is not tall.

The main theorem.

LeMMA 1. Let H be an open subgroup of a compact group G
having index [G: H] =t and let {, =1, x, ---, x,} be a set of left
coset representatives for H. Then we have

t
(1) | f@dr@) = 5 famdnyi)
] i=1JH
for every continuous complex-valued function f on G.

Proof. It is easily verified that the right hand side of (1) de-
fines a positive left invariant normalized measure on G.

LEMMA 2. Let G and H be as in Lemma 1. If 0eG and
|X,(h)| = d, for all he H then
X1, = d,/t"

for all pell, oof.

Proof. By Lemma 1 we have
2
1%z = e 5| 1@ Pdrah)
i=1JH
= | |xmpdram)
H

= t-'d}

from which the lemma follows at once.

LEMMA 3. Let G and H be as in Lemma 1 and let f be a
continuous complex-valued function on G which vanishes outside H.
Define a continuous function g on H by setting g(h) = f(h) for all
he H. Then for pell, o[ we have

1l =t gll, -
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Proof. This follows immediately from Lemma 1.

LEMMA 4. Let G be a compact group and let ECG be a A, set
for some pell, co[. Suppose that for each o€ E there is an open
subgroup H, of G of index t, and a representation t e H, such that
o 18 equivalent to the induced representation t€. Then we have

sup{t,; e B} < oo,
Proof. For each o€ E define a continuous function f, on G by

setting

A.(x) for xzeH,
Jol@) = 0 for »eG — H, .

Now for each peé we have
Olu, = ?}? (V) -0

where n,(v) denotes the multiplicity of v in the representation of
H, obtained by restricting the domain of p. Since we have

o) =t motdna, ()

by Lemma 1, the orthogonality relations for H, then show that
f,,(p) vanishes for all pe@ for which #n,(z) = 0. By Frobenius re-
ciprocity, these are all p except 0 = ¢ and so we have that f, € Sy(G).
Using Lemma 3 and a standard inequality for L? spaces (see (13.17)
of [5]) we have

WFalls = &7 (1 Xl
= 67 1 Xl

=t | ol -

Now if E is a local 4, set then there is a positive constant £ such
that

Wfoll, < kl|f)l, for all oeE
so the above calculation shows that
tiv* <k for all ockE
and this can only happen if
sup{t,; 0 e E} < oo .

LEMMA 5. (Jordan, Blichfeldt). Let G bea finite complex linear
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group of degree m. Then G has an abelian mormal subgroup A
such that

[G: A] < 64n2llogn .

Proof. See p.177 of [3] and observe that

,n' 67:(1;—{-1)-{—1 < 647»2/10gn

where 7(m) denotes the number of primes not exceeding m.
THEOREM. Let G be a profinite group and let Ec@G be a local
A set. Then we have
sup{d,: 6 e B} < o .
Proof. For each e E we may apply Lemma 5 to the finite

group G/ker ¢ to obtain an open normal subgroup 4, of G such that
A,Dker o, A,/ker 0 is abelian and

[G: Aa] < 64d§ /logd,

By Clifford’s theorem (see §14 of [3]), for each o there is an ir-
reducible 1-dimensional representation &, of A, and positive integers
e, and ¢, such that

Ola, =€, {63 D - D&}

where {x, =1, ., ---, %, } is a set of left coset representatives of
the inertia group S, given by

S, ={xeG: & =¢,}

with [G: S,] = ¢,. Also for each o0e F we have o = z{ where 7, is
an irreducible representation of S, satisfying z,,, = ¢,-&,. Since E
is local A, for every pell, [, we have by Lemma 4 that

B={supt,,o0elE} <o .
Also, since £, is 1-dimensional, we have for all x € A, that
X, @] = e,-|&,@)]| =€ =d., .
Thus, applying Lemma 2, we get for pe]l, «[ that
WX, 1, = d.,/1S:: A 17" .

Now define a continuous function f, on G by setting
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tyx. (x) for =xzeS,

Fo@ =1, for weG— S, .

Arguing precisely as in the proof of Lemma 4 we have that f, e
Si(G) and, by Lemma 3, we have for pe[2, o[ that

(2) I Folls = &2 X, 1l = 11X, Il
In particular, we have
[Folle = X lle = 1.
Taking p = 4d:/log d, and observing that
d, =td., < B-d.,
we have from (1) and (2) that
| folliznosa, = 4, [[Ss: A% 2

> B-'d,/[G: Aq]logdamdi
> d,/6B .

Now, since E is local 4, there is a constant x£ such that for each
geFE and all p€]2, o[ we have

1]l = &0 foll: = £DY* .
Again taking p = 4d?/log d,, we then see that
d,/6B = k(4d;/log d,)"*
and so we have
logd, < 144B%** for all oeckE .
It follows that
sup{d,:0e B} < oo .

COROLLARY. Let G be a profinite group. The following state-
ments are equivalent:

(i) @ s tall;

(ii) G contains no infinite local A sets;

(ii) G contains no infinite local Sidon sets;

(iv) G contains no infinite Sidon sets.

Proof. The implication (i) = (ii) follows immediately from the
theorem while the implications (ii) = (iii) and (iii) = (iv) are well
known (see §37 of [4]). Finally, the implication (iv) = (i) is con-
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tained in Corollary 2.5 of [6].

Complements. A result similar to ours for compact Lie groups
may be found in Cecchini [1]. An immediate consequence of our
theorem is that if the dual G of a profinite group G is a local 4
set then the degrees of the elements of G must. be bounded. Parker
[11] has proved the same conclusion under the weaker assumption
that G is a local central 4, set. If we restrict G to be a pro-nil-
potent group (i.e., a projective limit of finite nilpotent groups) then
a good deal more can be said with the aid of the following lemma.

LEMMA. Let G be a finite nilpotent group and let 0€G. Then
we have

2,1t > log d, .

Proof. We show by induction on d, that the tensor product
representation ¢ ® ¢ splits into more than log d, irreducible compo-
nents (not necessarily pairwise inequivalent). The assertion of the
lemma then follows immediately. The lemma clearly holds when
d, = 1. Now suppose that d, > 1. By Corollary 15.6 of [3] there is
a l-dimensional representation p of a subgroup H of G such that
o= p° Let M be a maximal subgroup of G containing H. Then
M is normal in G with prime index ¢ and 7 = p” is an irreducible
representation of M satisfying ¢ = 7% Let {#,=1,,, ---, 2} be a
set of coset representations for M. By Mackey’s tensor product
theorem (see Theorem 44.3 of [2]) we have

oo =7’
=R S| O],
By induction 7 ® r, and therefore (zr & 7)° splits into more than

log d. components. Thus, if m is the number of irreducible compo-
nents of 0 X o counted according to multiplicity, then

m>logd. +q—1
> log d. + logg
= log d, .

PROPOSITION. Let G be a pro-nilpotent group and let EcG be
either a local central A, set for a local A4, set or some pe]l, oof.
Then we have

sup{d,: 0 E} < = .,
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Proof. By our opening remarks every continuous irreducible
representation of G is essentially a representation of a finite nil-
potent quotient of G. Thus, if E is a local central 4, set, then the
preceding lemma shows that sup{d,: c € E} is finite. If F is a local
4, set then, since each oeG is induced from a 1-dimensional re-
presentation of an open subgroup of index d,, Lemma 4 shows that
sup{d,: ¢ € E'} is finite.

ExAMPLE. Let G = [I7-; A, where for each n A, is the alter-
nating group on n letters. By Theorem 2.5 of [7] G is tall so G
contains no infinite local 4 sets by our theorem. However G does
contain an infinite local central A, set. For each A, has an ir-
reducible representation o, of degree m — 1 obtained by restricting
to A, the irreducible representation of S, (the symmetric group on
n letters) afforded by the partition [#» — 1, 1] of ». From p. 766 of
[9] we have that o, ® o, splits into 4 irreducible components. Thus,
if w, is the projection of G onto 4,, then E = {o,°o7,:m =6,7T, ---}
is an infinite local central 4, set for G. In addition, Corollary 4.2
of [10] shows that E is a central Sidon set. Thus G is a profinite
group which admits infinite central Sidon sets but no infinite Sidon
set. In view of Theorem 9 of [13] and §§3, 4 of [6] it is unlikely
that such examples exist when G is connected.

The results of this paper appear in [8]. The author is indebted
to his supervisor Dr. J. R. McMullen for his many suggestions and
encouragement.
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