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The purpose of the paper is to prove the following

Turorem: Let E be a vector space over a field K with
char K 2, and let ¢ be a nondegenerate hermitian form
on E. Then the lattice of all orthogonally closed subspaces
of (E, ¢) is modular if and only if F is finite dimensional.

Introduction. It is well known that the lattice of all orthogonal-
ly (=topologically) closed subspaces of a Hilbert space H is modular
only if H has finite dimension (see Birkhoff—Von Neumann [1]). We
shall prove here that this is true generally for vector spaces E over
commutative fields K with char K = 2, supplied with nondegenerate
hermitian forms ¢: The lattice of all orthogonally closed subspaces
of (E, ¢) is modular if and only if E is finite dimensional. Non-
modularity in the infinite dimensional case is due to the fact that
then there are always two closed subspaces with nonclosed sum. In
a Hilbert space one can exhibit such pairs of subspaces in a con-
structive way (see [3]); our general case is much more involved,
and their existence will follow from an indirect proof.

1. Denotations. Let E be a (left-) vector space over a com-
mutative field K, and ¢: E XE — K a hermitian form with respect
to an automorphism at+— & of period 2 of K. We always assume
that char K +# 2. We usually write (z, ) instead of ¢(x, ), and we
write x Ly if (x,y) =0, z,ye E. Let F be a subspace of (, ¢).
The orthogonal space of F' is F* ={xcE:x 1Ly for all yeF}, and
the radical of F is rad F=F N F*. F is called semisimple if
rad F = 0. In particular, F is semisimple if E* =0, i.e., if ¢ is
nondegenerate. A subspace F is called orthogonally closed if F =
F+i(=(F*)*). All bases of vector spaces are algebraic. F is termed
euclidean if it is semisimple and admits an orthogonal basis. Semi-
simple subspaces of countable dimension are always euclidean (see
[2]). Every z € FE induces a linear form ¢, on F, given by ¢.(z) =
&z, x), z€ F. We let F'* denote the antispace of the dual space of
F,i.e., the K-space of all linear forms f: FF— K, where (f + 9)(z) =
f(z) + ¢g(2) and (af)z) =a-f(z), f, ge F*, e K. If F* =0 then F
can be considered as a subspace of F'*, identifying x € E with 4,.

If £ =6p;..F, and E, LE; for © + j, we write £ = @\ K,

2. The lattice ¥ (E, ¢). Let (E, ¢) be a semisimple hermitian
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space over K. The orthogonally closed subspaces of (K, ¢) form a
lattice .&¥ = £ (F, ) under the operations FAG = FNG and F\VG=
(F 4+ G)*+. This lattice is modular iff for all F, Ge & we have
I'VG = F + G (see [4], Theorem 33.4). Thus modularity of <2 (E, ¢)
is equivalent to the following property of (¥, ¢):

(A) The sum of two orthogonally closed subspaces is always closed .

If dim F < o then (A) holds trivially. We now prove the converse.

3. . Nonmodularity of (&, ¢) in case of infinite dimension.
We start with two technical lemmas. Their importance for our
problem will become evident later (cf. the proof of Lemma 3 below).

LeMMA 1. Let (E, ¢) be semisimple. Let F be a subspace with
dim F = W, such that for all subspaces U, VC F we have: If
U+ V=F then U** + V'* = E. Then F=E.

Proof. Taking U=V =F we get F** = E and F'* = 0. The-
refore E may be considered as a subspace of F'*. Let F = @i F,
be an orthogonal decomposition of F into finite dimensional sub-
spaces and let ye F'*. y is determined by the restrictions y|s,.
Every F, is semisimple since F'* = 0, thus y|,, is induced by a uni-
que y,€ F,. This allows us to represent y as a formal sum y=
DesYs, and we call the y,’s the components of y with respect to
the decomposition F' = @sF,. In particular every x€E has the
form » = >, ,.

Now suppose that E = F.

(1) We first show that then E = F'*. Let xe F with x¢ F.
One readily constructs a decomposition F = @}F, such that
dimF, =2 and z,+ 0 for all se€S (choose an orthogonal basis
{e,; 1 eI} of F and observe that card{ic I: (¢, &) = 0} = W, = card I).
Now let ye F*. We write ¥ = 3., %,, where y,€ F,, and suppose
first that {«,, y,} is linearly independent for all s. Let U and V be
the subspaces spanned by {y,:se S} and {x, — ¥,: s € S} respectively.
We have U+ V=F, thus U** + V**=FE. Write 2 =u + v,
where 4 = S u, e U** and v = 3,v,€e V*'(u,, v,e F,). Pick a,eF,
with a, #0 and a,1y,. Then a,e U*, hence 0 = (a,, u) = (a,, U,)-
Since dim F, = 2 it follows that %, = \,y, for some ), € K. In the
same way we get v, = (¢, — v,), tt.€ K. Since u,+ v, =z, We
have A, = ¢, = 1. Thus y, = u, for all s, hence y = u and in parti-
cular y € E in this case. Next we consider y = >, ¥, in F'* with
y, = 0 for all s. For every s choose z,€F, such that {z,, z,} and
{z,, ¥,} are both linearly independent. Applying the above reasoning
toz and z = 3,2, € F* as well asto z and ¥y we get first ze £ and
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then ye E. The y’s in F'* with all components 0 generate F'*.
Sinece all these #’s are in E we have E = F*.

(2) Suppose F = @: F,, where dim F, < ¥, for all s. Let
T=,%,Y=.Y, be in E, z,,y,€F,. We claim: if (z,v.) =0
for all s, then (x, ¥) = 0. To prove this let U and W be the sub-
spaces generated by {z,:s€ S} and {y,: s €S} respectively. We have
ULW, hence U** L W+*t. Therefore it is enough to show that
xeU* and ye W**. Choose linear complements V, of (x,) in F,,
F.=V,®(@,), and put V=@V, Then U+ V=F, hence
U''+Vt*=E. Write a =%+ v, where w=>,u,c¢U**, v=
>.v, € Vi, For every z,e€F, with 2, Lx, we have z,e U* and so
0= (z, u) = (2, u,). This gives u, € (x,)** = (z,). In the same way.
we get v,e Vit = V,. Sinee u, + v, = z, it follows that v, = 0 and
U, = %,. Thus x =ue U**. In the same way we see that ye Wt-.

(38) Let {e;;1€1} be an orthogonal basis of F. According to
F = @ile,) every x € E = F'* can be written in the form x = 3.£;-¢;
with &, = (e, x)(e,, e)". For TcI we put x, = 3, &le,, Where & = &,
for ieT and & =0 for 1¢ T. We consider a = >,, a,e; and b=
> B¢y Where o, = (e, ¢)"t and 8, =1 for all 7. a, be EF by (1). Let
I = SUT be a partitioning with card S = card 7. We show that

(as, bs) = (ar, by) .

We observe that (ag, b;) = (ar, bg) =0 by (2). Thus it suffices to
show that ¢ = a5 + a, and ¢ = by — b, are orthogonal. Let 6:S— T
be a bijection. For seS put F, = K(e,, ¢,,). Then F = @i F,. The
corresponding components of a and ¢ are a, = (e, ¢,) " +e, + (€4, €45) """
¢, and ¢, =¢, —e,,. We find (a,, ¢,) =0, and by (2) this implies
(a, ¢) = 0, as claimed.

We now choose te€ T and put S’ =SU{t} and T =T — {t}. We
have card S’ = card 7", hence (ag, bg;) = (as, bp). On the other hand,
from the relations ag = ag + (e, €)' ey Ap = ay — (€, ;)" '+, and
by = bg + ¢, by = by — e, we get

(as, bs) = (as, bs) + 1, (ap, by) = (ar, b)) — 1.

It follows that +1=—1, a contradiction sinece char K »= 2. This
completes the proof.

We can easily generalize the statement of Lemma 1.

LEMMA 2. Let (E, ¢) be semisimple. Let F be a euclidean sub-
space such that whenever U + V = F it follows that U+t + Vit =R,
Then F = K.

Proof. Since F*' = E we may suppose that dim F = W,. Let
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{e;: 1€ I} be an orthogonal basis of F.. Suppose that there exists a
r € E with ¢ F. Then there exists a subset LI with card L = ¥,
and [such that (e, ) = 0 for all 1€ L. Put @ = K(e);e, and R=
K(e)ic;—z; then F=Q@®* R and so E=Q'* @+ R**. Write z=
q +r where ¢c@Q**, re R'**. One easily verifies that the hypo-
theses of {Lemma 1 are satisfied for (@', 4lg:1) and @ (in lieu of
(E, ¢) and F). Hence @ = Q** and in particular ¢€@. But this is
a contradiction since (e;, @) = (e, ) # 0 for all 1€ L.
We now pass to study spaces (E, ¢) with property (A).

LEMMA 3. Suppose that the semisimple svace (E,$) has pro-
perty (A). Then for every euclidean subspace F we have F ‘=
F@*rad F*.

Proof. We have rad F** =rad F'*, and FNF*=0. Hence
there is a decomposition F'** = Q @' rad F* with FcQ. The space
Q with the induced form ¥ = g|, (restriction) is semisimple. We
shall show that the hypotheses of Lemma 2 are satisfied for (@, ¥)
and F (in place of (E, ¢) and F'); then it will follow that F = @,
proving our lemma. For UcQ we let U° denote the orthogonal
space of U formed in (@, ¥). Thus U° ={xe@Q:x1yfor all ye U}=
U*NQ. Now let U, V be subspaces of F with U+ V =F, we
must show that U* + V* = Q. Itisimmediate that U @rad F* DU+
and V*@rad F*OV*'. By (A), U** + V** is closed in (&, ¢), thus
Ut + Vv = (U + V)Y = (U + Vitt = F*+t. It follows that
(U+ VY Prad F-oU+ V++=F**, hence U+ V=@, as claimed.

Let (H,¥) be any hermitian, euclidean space over K. We
denote by Hy the set of all linear forms f on H with the property
that ker(f), as a subspace of (H, ¥), admits an orthogonal basis.
Let {h;: 1€ I} be an othogonal basis of H, and let f be any linear
form on H. Put J ={iel. f(h;,) # 0}. f is induced by some x € H iff
J is finite. In this case, of course, fe Hyf. Suppose J is infinite.
Then ker(f) is semisimple and we have fe Hf iff card J = W, ([2],
Satz 1). We now see that fe Hy if and only if there is a decom-
position H = Q@+ R with dimR < W, and f|, =0. In such a de-
composition @ is always euclidean (cf. [2]). We also see that HF is
a subspace of H*.

LEMMA 4. Suppose (E, ¢) is semisimple and has property (A).
Let F be a euclidean subspace. Then every feFj is induced by
some y € K.

Proof. If f is not induced by a x € F then G = ker(f) is semi-
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simple and thus, by definition of Fj*, euclidean; furthermore
dim F/G =1. We have F* = G*, for otherwise by Lemma 3 we
would have

GPradF =GHradG" =G = F** = F@rad F+,

which is impossible. Hence there is a y ¢ G+ with y¢ F'*, and it is
clear that f is induced by a suitable multiple My(» € K).

We are ready to prove our main result.

THEOREM. Let (E, ¢) be a semisimple hermitian space over a
commutative field K with char K =+ 2. The lattice of all ortho-
gonally closed subspaces of (E, ¢) is modular if and only if E is
finite dimensional.

Proof. One half of the statement is clear. Suppose (K, ¢)
is modular. Then (A) holds for (E,¢). Let M= {v:iel} be a
maximal set of pairwise orthogonal anisotropie vectors of £ (xc E
is anisotropic if (x, ) = 0). The subspace F spanned by the »,’s is
euclidean. By the maximality of M we have ¢|r. = 0, hence
rad F* = F*. Thus F**=F@ZF* by Lemma 3. Now suppose
that dim £ = W,. Then dim F' = R, since (F, ¢) is semisimple. Hence
there exists an element fe F* which is not induced by a ze F. By
Lemma 4, f is induced by some ye€E. Clearly y¢ FFd F*; since
FQF*=F*' there exists veF* with (v,y)#0. Put G=
FO WA @w. One readily verifies that G is semisimple. Since
fe Fy there is a decomposition F'= Q@ @* R such that f|, =0 and
dim R = W,; here @ is euclidean. We have y€@* and so G =
QP (RD (y) D (v)) which shows that G is euclidean. We define
a linear form ¢ on G by gl =f, 9(¥) =0, g(w)= (v, ¥) 1. The
above decomposition of G shows that geG¥. Hence ¢ is induced
by some ze€ F. Since gl =f we have z —yecF*, ie.,, 2=y +w
with weF-. Now (v,9) + 1 =g = (v,2) = (v, ¥) + (v, w), hence
(v, w) = 1. But this is a -contradiction since v, we F* and ¢ vani-
shes on F'*. This completes the proof.
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