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CYCLIC VECTORS FOR L*(G)

VIKTOR LOSERT AND HARALD RINDLER

If G is a first countable locally compact group, then L?(G)
has a cyclic vector with compact support, where 1 < p < co.

In [3] Greenleaf and Moskowitz proved the existence of cyclic
vectors for the left and right regular representation of L*(G), where
G is a first countable, locally compact group, see also [4] and [5].
We generalize this result to L?(G) (1 £ p < =) and certain other
L'(G@)-modules.

THEOREM. Let G be a locally compact group.

(1) If G is first countable, them there exists a continuous
Sunction uw on G with compact support such that the left invariant
hull of u 18 dense in L*(G) for 1=<p<<oe. The right hull of w (for
the corresponding right action of G on L*(GR)) is also dense in L*(G).

(ii) Comwversely, if 1< p < oo and L*(G) has a cyclic vector,
then G 1is first countable.

For the proof of the theorem we need two lemmas:

LemMMA 1. Assume that H is a closed subgroup of G which 1is
isomorphic to R. If the monzero measure (t is concenlrated on «
compact subset of H, then {fx*p: fe 227 (@)} is dense in L*G) for
1 <p< oo,

Proof of Lemma 1. Define ¢ by 1/g + 1/p = 1. If the space
defined above is not dense in L?(G), there exists a nonzero continuous
function ¢ € L(G) such that (f+*y, g> = 0 for all f € 2£7(G), the space
of continuous functions with compact support (if ¢ is not continuous,
replace g by hxg # 0, he 27 (G). Put g (z) =g@)(x€G), then
pxg” =0 on G. Put g = 4,(-)"-p and for y G, x e H, set g,(x) =
gy x)dg(x)*? (4s denotes the modular function on G). By Weil’s
formula ([7], pp. 42-45) g,€ L‘(H) holds for a.e. y€G. A short
calculation shows that

pxgy (x) = pxg (wy)ds(x)* for xcH.

Since g is continuous we conclude that g*g, =0 on H. y, is con-
centrated on a compact subset of H = R and nonzero. The Fourier
transform /I, is an analytic function. It follows that it has at most
countably many zeros. By [1] the set {f*p: fe.22°(H)} is dense in
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L?(H) for 1 < p < . If g,€L‘H), it follows from this that g, =0.
Again by Weil’s formula we conclude that g = 0.

In a similar way we obtain:

LEMMA 2. Let H be a closed subgroup ofG, p a bounded measure
on H. If p generates a dense left (right) ideal in L'(H) then it
generates a dense left (right) ideal in LNG). If H is compact, the
same holds for LP(G)(1<p<oo). ‘

Proof of the theorem. (1) We use Yamabe’s theorem to find
an open subgroup G, of G, and a compact subgroup ¥ of G,, normal
in G,, such that G/N is a connected Lie group. Now we use the
description of the Haar measure given in [2]. There exist closed
subgroups H,, ---, H, of G,, each of them being isomorphic to R,
and a compact subgroup K 2 N such that G, = H, --- H,K and this
is a topological decomposition of G,. The Haar measure on G, is
simply the product of the Haar measures on H,, ---, H, and K. Now
let f be a continuous function on R with compact support and
nowhere vanishing Fourier transform. Let g, be the measure on
H, = R defined by f(# =1, ---, n). Since G is metrizable, the same
holds for K and it follows that the dual of K is countable. Let ¢
be a continuous funection on K such that U(g) is invertible for any
continuous, irreducible representation of K. Let ,., be the measure
defined by g. It follows from Lemmas 1 and 2 that {hxg*---* g, :
h € K(G)} is dense in L?(G) for 1<p < co. The measure ff *---*t,,
is absolutely continuous on G,, its derivative with respect to Haar
measure is u (@, < X,4,) = f (@) -+ - f(@)9(@pr)) (@, €H, =1, -+, m,
2,41 € K). It follows that u has the properties stated in the theorem.
The proof for the right invariant hull is similar.

(ii) This part is entirely analogous to the case of L¥G) which
was proved in [4] Theorem 2.1.

DEFINITION (see [6]). A symmetric Segal algebra S(G) on G is
a dense, left and right invariant linear subspace of LYG), such that
S(G) is a Banach space with respeet to a norm || |ls, IF1l = Il flls
for f € 8(@), y— L, and y — R, are strongly continuous representations
of G by isometries on S(G), [6], Ch. 6, §2.1,2.2, (it follows in
particular that S(G) is a left and right L*(G) module and that the
action of LYG) is contractive).

COROLLARY. If S(G) s a symmetric Segal algebra on G and the
Junction w of the theorem belongs to S(G), the left and right invariant
hulls of w are both demse in S(G).
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Proof of the corollary. Take ge S(G). Since right translation
is continuous on S(G), there exists h € K(G) such that ||g*h — g||s <e.
By the theorem there exists k¢ K(G) such that ||k+u — hl|, <e. It
follows that

lgxkrxu — glls = [[g*ksu — gxh|ls + llgxh — glls < e(liglls + 1) .

The proof for the right invariant hull of % is similar.
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