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For any algebra C over a commutative ring k Sweedler
defined a cohomology set which generalizes Amitsur's second
cohomology group H2(C/k). Any Sweedler C-two-cocycle σ
gives rise to a change of rings functor ( )σ from the
category of C-bimodules to the category of O-bimodules,
where Cσ is the ά-algebra with multiplication altered by σ,
which in turn induces a map φ*(σ, M): Hn(C, M) -> jffn(Cσ, M°)
on Hochschild cohomology for any C-bimodule M and any
positive integer n. In this paper, several properties of φn(σ, M)
are derived, including: If C is a finite dimensional algebra
over a field k, φι{σ, M) is an injection for all σ and M.

1* Introduct ion. In §2 we establish our notation conventions
and review the basic definitions of Sweedler's two-cocycles and
Hochschild cohomology. We also recall the change of rings functor
( )σ associated with a Sweedler C-two-cycle σ from the category of
C-bimodules to the category of Cσ-bimodules for any algebra C over
a commutative ring k.

The map φn(σ, M) induced by ( )σ from the nth Hochschild
cohomology group Hn(C, M) of C with coefficients in the C-bimodule
M to Hn(C% M°) is studied in §3. This map links the multiplicative
cohomology of Sweedler and Amitsur to the additive cohomology of
Hochschild. We provide an example to show that this map need
not be surjective but show that if σ is invertible in an appropriate
sense φn(σ, M) is actually an isomorphism. In particular, if σ is an
invertible (i.e., Amitsur) two-cocycle contained in a commutative
subalgebra A of C, then φn(σ, M) is an isomorphism. The behavior
of φn(σ, M) under base extension of k and two-cocycles equivalent
to σ is considered, and several other results are derived which are
useful in studying keτφn(σ, M).

In §4 we prove that if C is a finite dimensional algebra over a
field k, φ\σ, M) is injective for all σ and M; that is, σ induces an
injection of the group of equivalence classes of ^-derivations of C
with values in M into the group of equivalence classes of ά-deriva-
tions of C° with values in Mσ. This result is compared with
Flanigan's work on Gerstenhaber's deformation theory.

2* Notat ion and preliminaries• Let C be an algebra over a
commutative ring k and let unadorned (x) and Horn represent (g)fc

and Homfc, respectively. Denote the n-ίolά tensor product C(x) (x) C
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by C Θ \ We denote the opposite fc-algebra of C by C° and call a
left C (x) C°-module a C-bimodule. In this section we provide a brief
review of the pertinent features of Sweedler's theory of two-cocycles
and Hochschild's cohomology theory.

Following Sweedler [7], we call an element σ = Σ * ai ® &< ® c»
in C (&C (g)C a C-two-cocycle if

Σ α Λ = Σ ai

and there is an element ea in C with

Σ α ^ A ® c , = i(χ)i = Σ^i®fe^aCi.
i i

Given a C-two-cocycle σ we may form a fc-algebra C° as follows. As
an abelian group Cσ is equal to C. For any x in C, we use the
notation x° to indicate that we are considering x as an element of
Cσ. The product * of any two elements xσ and yσ in Cσ is defined
by

xσ*yσ =

The C-two-cocycle σ =
the C-two-cocycle r = r%

to be cohomologous to

Vt ίn C (g) C if~ Σ*
Σ χia5 = Σ

and

Σ
i

If the element Σ t ̂ ί Θ 1/2 ίn C(g)C° is invertible, <5 is called vertible,
and σ and r are said to be equivalent, denoted σ ~ δτ. In this case
the ^-algebra map Rδ: C° -> CΓ defined by Rδ(cσ) = (Σ< »iCy<)Γ is an
isomorphism.

DEFINITION 2.1. For any C-two-cocycle σ = Σ * α* ® &* ® ci> tet
the linear map φ(σ): Cσ (x) Cσ0 -• C <g) C° be defined by

α;σ (x) r ° > Σ a^ xbi (x) {e^yc^ .

(5((7) is a fc-algebra map and hence induces a change of rings functor
from the category M(C) of C-bimodules to the category M(Cσ) of
Cσ-bimodules which we will denote by ( )σ. The interested reader
is referred to [5, 6, 7] for more of the theory of Sweedler two-
cocycles and the maps ( ) σ .

Now we review the basic definition of Hochschild cohomology.
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For any integer n ^ 1 and any C-bimodule M define δn: Horn (C®n, M) ->

Horn (C®(*+1>, AT) by

0 (g) a?Λ+i) = a?i/(a?2 ® <g> & +i)

Σ (~l)*/(a?i(8> ••• ®&<&i+i(8> ••• (8)a?n+i)
0«

The nth. Hochschild cohomology group of C with values in M is then
defined as Hn(C, M) — ker δn\Ym δn~\ If C is a projective ά-module,
it may be shown [1, Chap. IX] that Hn(C, M) = ExtSβoo(C, Af).
Further discussion of Hochschild cohomology may be found in [1, 4].

3* Map induced on Hochschild cohomology by a two-co-
cycle. The change of rings map φ(σ) associated with a Sweedler
two-cocycle σ introduced in Definition 2.1 induces a map φn(σ9 M):
Hn(C, M) -> Hn(Ca, Ma) on Hochschild cohomology which is the focus
of this paper. In general, this map is not surjective, as the following
example illustrates.

EXAMPLE 3.1. Let k be a field and C be a central separable h-
algebra. Then Hn(C, M) = {0} for all n^l and all M. However,
given any fc-algebra D with ^-dimension of D equal to the A-dimen-
sion of C, there is a C-two-cocycle τ with D ~ CΓ [7, Theorem 6.1].
Choose τ so that CT = k\x]/(xm) with m = ^-dimension of C. Then
11X0% Cτ) Φ {0} since d/dcc is a nontrivial Hochschild 1-cocycle. Thus
φ\τ, C) is not surjective.

In certain cases, however, φn(σ, M) is actually an isomorphism.

DEFINITION 3.2. A Sweedler C-two-cocycle σ = Σ* α* ® h ® ^
is vertible if Σ*,y α iα i ® δ} ® cfii (g) c? is invertible in C (g)C° (g)
C(g)C°.

LEMMA 3.3. // a Sweedler C-two-cocycle σ is vertible, φn{σ, M)
is an isomorphism for all n and M.

Proof. Let Σ* UiφvϊϊSϊWi® Ά be the inverse of

define #(<r): C ® C° -> C (g) C°° by

** ® IΛI = Σ

Then it may be verified directly that φ(σ) = ^(σ)"1. Therefore
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is an isomorphism and hence the induced maps φn(σ, M) on Hochschild
cohomology are isomorphisms.

EXAMPLE 3.4. Let A £ C be λ -algebras with A commutative.
If σ in A(g)A(g)AQC(g)C(g)C is an invertible (i.e., Amitsur) A-
two-cocycle, clearly σ is a vertible C-two-cocycle and thus φn(σ, M)
is an isomorphism for all n and M.

In the next section, we will show that ker {φ\σf M)} — {0} for
any Sweedler two-cocycle σ if C is a finite dimensional algebra over
a field &. First, however, we need several simplifying tools. Let
a and τ be C-two-cocycles such that σ ~ δτ. Then for any n and
M, φn(τ, M) = Rf o φn(σ, M) where R_δ is induced by the algebra iso-
morphism Rδ: C° —> GT. Therefore we have

LEMMA 3.5. // a and τ are equivalent C-two-cocycles, M is a
C-bimodule and n is a positive integer,

ker {φ*(σ, M)} - {0} iff ker {φ%τ, M)} = {0} .

LEMMA 3.6. Let Sίt ί = 1, 2, be algebras over the commutative
ring k. Hence C = Sλ X S2 is a k-algebra with diagonal k-action
and canonical projections p^. C —> Su i — 1, 2. //

δz2) Θ (cα, c<2)
i

is a C-two-cocycle,
( i ) p5 (σ ) = Σ< α ϋ ® δij (8) ̂ i ^ α^ Srtwo-cocycle.
(ii) // δ3- — Σ< χίό ® Via is a vertible element in S3- (x) Sίf j = 1, 2,

then

o - (1, 0) <g) (0, 1) + (0, 1) (X) (1, 0)

+ Σ (««, 0) (X) (2/<lf 0)

+ Σ (0, »„) (8) (0, i/<2)

ΐs a vertible element in C (x) C α?zcί σ ~ δτ defines a C-two-cocycle τ
with eT = ( Σ i ffii^l/ii, Σt^2βσ22/i2) i / σ̂ = (eai, eO2).

Proof.
( i ) follows trivially since an algebra map clearly preserves the

two-cocycle relations.
(ii) If δj — Σ i %ij ® ̂ ϋ is the verse of δ̂  , then one may show

that

δ - (1, 0) <g> (0, 1) + (0, 1) <g> (1, 0)

+ Σ {xn, 0) (8) (»„, 0)
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+ Σ (o,*«) ® (o, vώ

is the verse of δ. The form of eτ is clear.

Suppose now that k is a field and let L be an extension field of
k. The natural injection C-^ C (g) L induces a map G®C®C—>
(C 0 L) (x)L (C (x) L) (x)L (C®L). Let σ 0 1 denote the image of the
C-two-cocycle σ under this map. Then we have a commutative
diagram with exact rows

{0} -> ker φn{σ, M) > Hn(C, M) • Hn(C% M°)

{0} -> ker φ*(σ 0 1, Λf 0 L) -> Hl(C(g)L, M® L) -> ίί!(Cσ (x) L, ikf7 (x) L)

where Hl( — , —) denotes the Hochschild cohomology as an L-algebra
rather than as a fe-algebra. Since L is a field extension of k, it
follows easily by linear algebra from the definition of Hochschild
cohomology (cf. §2), noting (C (g) L) (x)L n - (C®n) (g) L, that the map
Hn(C, M) —• fl";(C (g) L, M 0 L) is injective. Thus the above commuta-
tive diagram allows one to conclude that ker0*(*7 0 1 , M®L) = {0}
implies that ker φn(σ, M) = {0}.

LEMMA 3.7. If C is an algebra over an algebraically closed
field k which is Artinian as a ring and σ is a C-two-cocycle, there
is a C-two-cocycle τ with σ ~ δτ and eτ — 1.

Proof. Since C is Artinian, the Jacobson radical J(C) is nilpotent
and thus by [5, Theorem 4.7] σ — q(τ) where q is the endomorphism
of C induced by projection modulo J(C). (Note that since k is
algebraically closed, the semisimple algebra C/J(C) is actually separa-
ble over k.) We may henceforth assume C is semisimple and thus
by Wedderburn-Artin structure theory we have C = ΠΓ=i St where
St = M(ni9 k), the algebra of nt by n{ matrices over k. Then by
Lemma 3.6 it is sufficient to show that the SΓtwo-cocycle pt(σ) is
equivalent via δt to an S^-two-cocycle τ̂  with eτ. = 1. If n{ — 1 and
Si = k, one may take δt = 1 0 eo. (cf. [6, §1]). If 7̂ i > 1, then the
existence of 8t = Σ i «ϋ ® Vh with βσ. -

 dieH and Σ i ̂ H^VH = 1 is
assured by [7, Theorem 6.1].

4* Injectivity of ^(σ, M)* In this section we prove

THEOREM 4.1. Let C be a finite dimensional algebra over a
field k, σ be a Sweedler C-two-cocycle, and M be a G-bimodule. Then
φ\σ, M): H\C, M) -> H\C% Ma) is injective.
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In light of the results in §3, we need only to prove:

THEOREM 4.2. Ifk is an algebraically closed field, C is a finite
dimensional k-algebra, σ is a Sweedler C-two-cocycle, and M is a
C-bimodule, then there is a Sweedler C-two-cocycle τ with σ equivalent
to τ and φ\τ, M) injective.

To establish this theorem we need several preliminary results.

LEMMA 4.3. If k is a field, C is a k-algebra, σ is a Sweedler
C-two-cocycle, and M is a C-bimodule, the map φ\σ, M) is induced
by the map

d > (xσ > (Σ aiafiodibsxbie^CiCA j

from the group Derfc (C, M) of k-derivations of C with values in M
to Derfc (Cσ, Ma).

Proof. This lemma may be proved using the definition of φ(σ).

LEMMA 4.4. Let C be an algebra over the commutative ring k,
M be a C-bimodule, and d: C —> M be a k-derivation. Let a == 2ϊiα* ®
bi (x) Ct and m be elements of C0C0C and M, respectively, such
that

d(x) = X, a^bimCi — Σ a^b^Ci = [x, m]a
i i

d(bt) = 0 for all i

Then d(x) = xm — mx = [x, m] for all x in C.

Proof. Letting [ , ] denote the usual Lie bracket, we have

d(x) = Σ aiXbiWCi — Σ a^mbiXCi

(4.5)
= Σ ai%[bi, m]Ci + Σ ai[l>i, m]xCi + [x, m] .

i i

Since d{bτ) = 0 for all i,

[biy m] = ~ Σ aM^ό, mfa - Σ
3

Hence we may rewrite eqn. (4.5) as

d(x) = —

Σ
3

i j
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— Σ Uiaλbj, mfyiCsXCi + [x, m]
i>3

= — Σ aiXdφάCi — Σ dtd^xCi + [x, m]
i i

d(x) = [a;, m]

and we are done.

Now we are ready to prove Theorem 4.2:
Since we are assuming C is a finite dimensional algebra over an

algebraically closed field, we may write C = BQ)J(C) with J(C) the
Jacobson radical of C and B a /^-separable subalgebra of C. By [5,
Theorem 4.7], σ is equivalent to its projection modulo J(C), a C-two-
cocycle σ1 in B® B® B. Then using Lemma 4.3 and the fact that
H\B9 M) = {0} [4, Theorem 4.1], the map Derfc (C, Λf) -> Derfc (C% Mσ0
which induces ^(OΊ, Λf) is given by d —> (af1 —> d(x)°ι). Thus ^(σ^ Λf)
will be injective if for any m in Λf, d(xσή = x°2 * m°2 — mσ2 * x°2 for
all a? implies that d(x) = xm — mx for some two-cocycle σ2 equivalent
to (7X. This follows from Lemma 3.7 and Lemma 4.4.

REMARK 4.5. Theorem 4.2 may be paraphased as "multiplication
alteration shrinks the separable part of C" Since J(C)a £ J(C°) for
J{C) nilpotent [5, Lemma 2.1], multiplication alteration adds to the
nilpotency of C. Hence the effect of multiplication alteration is in
a sense opposite to the effect of Gerstenhaber's deformation theory
[3] which adds to the separable part of C and shrinks the radical
[2, Theorem 1],

ACKNOWLEDGMENT. I wish to thank Moss Sweedier for discus-
sions during which the proof of Lemma 4.4 evolved.
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