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CONTINUA IN THE STONE-CECH REMAINDER OF K2
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In this paper it is shown that BSR2— R? contains 2° non-
homeomorphic continua. This extends the result already
known for dimension three and greater.

Introduction. In [5], it is shown that for n = 3, there are 2°
nonhomeomorphic continua in 3R — R*. The proof involves embed-
ding solenoids in R? and hence does not work for the cases n = 1, 2.
In this paper, we prove that SR*— R’ also contains 2° nonhomeo-
morphic subcontinua. While this implies the result for (n) =3, the
construction in [5] also exhibits ¢ continua in BR*— R® with non-
isomorphic first Cech cohomology groups, and 2° compacta in
AR — R*, no two of which have the same shape. Also, it seems
reasonable that the continua constructed in SR® — R® may be shown
to have different shapes, or even nonisomorphic first Cech cohomo-
logy groups. In the case of QR®* — R’ it seems unlikely that any
additional shape-theoretic results can be obtained with this construec-
tion. The case » = 1 is yet unsolved.

Preliminaries. Let /X denote the Stone-Cech compactification
of a space X. For references, see Gillman and Jerison [1], or
Walker [4]. The Stone-Cech remainder of X, gX — X, will be
denoted by X*. Note that the remainder of a closed subset of R”
is contained in BR™ — R". Also, the image under a rotation of R*
of a set in R? of the form {(x,¥):2=20, a <y =7v;a, vyeR} will
be called a thickened ray.

Main result,
THEOREM. There are 2° nonhomeomorphic continua in SR* — R°.

Proof. For the sake of clarity, we consider first the construec-
tion of ¢ nonhomeomorphic continua in BR*— R®. We will then
apply these arguments and results in the construction of 2° non-
homeomorphic continua in SR* — R*.

Consider a collection {P,: a €.} where each P, is an infinite
subset of positive integers; for a % b, either P, — P, +# @ or P, —
P,# @; and card.%” =¢. For peP, consider the two rays
{@,y):2=0, y=1/p} and {(x,y):x=0, y =1/(p +1)}. Between
these rays, consider p disjoint thickened rays, say T,(», n), where
n=12 -, p, and labeled so that if %, < u,, the y-coordinate of
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any point in T,(p, »,) is greater than the y-coordinate of points in

To(p, n).
Let L(n) = {(z, ¥): 2 = 0, y = 1/n}, and let C(n) = {(x, y): 2* + ¥* =
n, =0, 0 <y <1}. Hence we have the following situation:
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The continuum X will be formed as follows. Let T, denote the
union of the Stone-Cech remainders of the thickened rays T.(p, n),
L the union of the remainders of the rays L(n), and C the remain-
der of the union of the curves C(n). X will be the closure in gR®
of the union of these sets, i.e. X = T,ULUC. One can verify that
X is a continuum BR®— R®*. (Note that X is not the Stone-Cech
remainder of the closure in R? of the union of the rays and curves.)
For a different subset P, of positive integers, we define T, analog-
ously, and let Y=T,ULUC. Then Y is also a continuum in
BR* — R*.

We will show that X and Y are not homeomorphic. Suppose
h is a homeomorphism from X onto Y. We begin by showing that
h(Tu) = Tb-

Suppose z € T*(p, n) = 3(T.(p, »)) — T,(p, »)) for some peP,
1<n<p, so that « is not an element of C— T,. Then, since
T*(p, n)N L = @, there is a neighborhood N(x) of 2 in X such that
N(z) S T#*(p, n). Suppose h(x) is not an element of 7,. Then
wx)eL or hxz)eC— (LUT,). But C— (LUT, is open in Y, so
each point of C — (L U T,) has a neighborhood of dimension <1,
since dim (C) = 1. Since any neighborhood of x has dimension 2
(by claim 2, Theorem 6 of [5]), h(x) cannot be an element of
C— (LUT,. Hence, h(x)eL. Then h(N(z)) is a neighborhood of
h(x), which implies there is a point y € L such that y € h(N(x)). But
since yeL, y has neighborhoods of dimension <1, while every
neighborhood of A~*(y) has dimension 2, since h~'(y)€ N(x) and
N(x) < T*(p, n). This is a contradiction, and so h(x) € T,.

By an argument similar to the proof of claim 3, Theorem 6 of
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[5], every point of T*(p, n) is a limit point of such points z, so
m(T*(p, n)) S T,, for every (p, n) with pe P,, 1 < n =< p. Therefore,
WT,) < T,, which implies W(T,) < T,. Similarly, h(T,) < T,, and so
mT) =T,

Now, h must take the isolated components of T, to the isolated
components of T,. These are precisely the sets T¥*(p, n) and
T#(q, m), respectively. So, for every (p, n) with peP,, 1 < n < p,
we have W(T*(p, n)) = T¥(q, m) for some g€ P,, 1 <m < q.

Since a # b, either P, — P,+* @ or P, — P, + @, so without loss
of generality assume P,— P, #* @, and let ge P,— P,. For some
(p,n),peP,, L=n=p, W(Ti(p,n) =T, 1). We may assume
p<q since p=*gq. Then there are integers m, m’' such that
l1=m=<gq, 1=m £q, with h(T?(q, m)) = T*(p, ©) for some 4, and
h~{(T¥(q, m")) = TX(p', n') for some p'eP,, p'#p, L=n < p’, and
Im — m'l =1. Now, T§(q, m) and T¥(q, m') separate Y into two
connected components and one disconnected component (since
|m — m'| = 1). However, h"(T(q, m)) = T*(p, 1) and h (T (g, m')) =
T¥(p', n') separate X into three connected components, since p = p’
This is a contradiction; hence X and Y are not homeomorphie.

So far, we have constructed ¢ continua in gR* — R? no two of
which are homeomorphic. We will how modify the construction to
obtain 2° nonhomeomorphic continua in gR* — R”

Let SE .o such that card S = ¢. There is a one-to-one cor-
respondence between elements of S and real numbers » such that
0 < #» < 2m. So, each a €S corresponds to a unique 7, €[0, 27). Let
h,: R*— R® be a rotation of R* by », radians. For each element,
a, of S we will construet a continuum in the manner of the first
section, except along the ray h, ({(z, y):2=0, y =0}). We will
then take the union of these along with the Stone-Cech remainder
of the set U.,..{(x, y): 2* + ¥* = n}. More precisely, let R, (p, n)=
r, (T, (p,m), peP,, 1 =n < p, and Q,(n) = h, (L(n)). Then, let R
denote the union of the Stone-Cech remainders of the thickened
rays R,(p, n), where ae S, peP,, 1L<n<p; Q the union of the re-
mainders of the rays @Q,(n); and K the remainder of the union of
the cireles {(x, ¥):2* + y* = n}, » = 1. Let X be the closure in QR®
of the union of the sets, i.e., X = RsU QU K. One can verify that
X is a continuum. For another subset T of .o such that T = S
and card T = ¢, we define R, analogously, and let Y =R, UQ U K.
Then Y is also a continuum in gR* — R

We will show that X and Y are not homeomorphic. Suppose
h is a homeomorphism from X onto Y, and consider BsU Q. Fix
a €8, and let N, N, be neighborhoods of the ray h, ({(z, y):x =0,
y = 0}) of radius 2,3 respectively. Let f: R*— [0, 1] be a continuous
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function such that f(N,) = 0 and f(R*— N,) = 1. Then f has a con-
tinuous extension, gf, to all of gR*. For peP,, 1 <n <p and
m = 1, since R,(p, ») and Q,(m) are contained in N,, Bf(R¥(p, n))
and Gf(Q¥(n)) are both 0. On the other hand, if a*a'€S, geP,,
1<% <q, and m’ =1, then outside of some compact set (that de-
pends on a') R,(q,n’) and Q,.(m’) are subset of N,. Therefore,
Bf(R:(qg, n")) and Bf(Q*(m')) are both 1. This implies that the
closure of the wunion of all sets of the form R*(p, n)peclP,,
1<% <p) and Q*(m) (m =1) is isolated in BxUQ. Hence, an argu-
ment identical to the one in the preceding section shows that
h(Rs) = Ry. _

Now, h must take the isolated components of Ry to the isolated
components of R,. These are precisely the sets RX(p, n), a €S, and
Ri(g, m), be T, respectively. So for every aeS and (p,n) with
peP,, 1<n<p, we have W(R}(p, n)) = R¥(q, m), for some beT,
ge P, 1L<m = q.

Either S— T @ or T — S # ¢, so without loss of generality
assume I'— S+# @, and let e T — S. Let geP, and consider
R}(q,1). For some a,€8, peP,, and 1< n < p, h(Ri(p, n) =
Ri(q,1). Since a, # b, by an argument similar to the one used to
show the continua in the first section were not homeomorphic, not
every component of the form Ry(q', m) can have as its inverse image
under 7 a component of the form Rj(p’, n’). Hence, there is an
element a, of S, p’eP,, and 1 =<' < p’, such that a, #a, and
h(RE(p', n)) = Ri(q', m) for some ¢'eP,, 1 =m < ¢".

Now, RX(p, n) and R(p’, n') separate X into two connected
components, each of which contains an infinite number of isolated
components of  Rj. However, W(R(p, n)) = Ri(q, 1) and
h(R}(®', n')) = Ri(q', m) separate Y into either one connected and
one disconnected component (in case ¢ = ¢q’, m = 2), or into two
connected components where one contains an infinite number of
isolated components of R, and the other contains only a finite
number of isolated components of R,.

Since k is an onto homeomorphism that takes the isolated com-
ponents of Ry to the isolated components of R, this is a contradic-
tion. Hence, X and Y are not homeomorphic.

Since .7 contains 2° subsets of cardinality ¢, there are 2°
choices for X, no two of which are homeomorphic. Hence, since
there are at most 2° continua in AR’ — R’ there are exactly 2°
nonhomeomorphic continua in gR* — R*.

COROLLARY. Let X and Y be as 1im the proof of the above
theorem. Then there does mot exist a continuous map f: X — Y
that 1s o shape equivalence. In particular, X and Y are mnot
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homotopic.

Proof. 1In [2], J. Keesling proved the following: Suppose Z is
real compact and K is a continuum contained in 82 — Z. Then if
n(K) = L is any continuous map which is a shape equivalence, & is
a homeomorphism. Hence, since X and Y are not homeomorphie,
there does not exist such an f.

REMARK. In the first part of the proof of the theorem, it
would have been simpler to let A be the union of the regular and
thickened rays, along with the curves C(n) and the positive z-axis,
and let X =84 — AZ BR* — R’. However, in this case, any neigh-
borhood of a point » in the remainder of the z-axis in X has
dimension 2, yet is not in T,. The fact that any neighborhood of
» has dimension 2 follows from the fact that if {B.,};., is a de-
creasing sequence of closed, n-dimensional sets in R™, then for any
point = in B = (=, B, any neighborhood of x in B has dimension
n. To see that p is not in T,, let h: R*— [0, 1] where h({(x, y):
222, 0y <1/(@d}) =1, and h{(z, y):x =2, y=1/x}) = 0. Then
WT,) = 0 implies gh(T,) = 0, but Bh(p) = 1. Thus, if we had used
the above definition for X instead of the one given in the proof of
the theorem, we would not have been able to show that the sets
T#(p, n) were sent to the sets Ty(gq, m) under the homeomorphism.
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