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[0, oo]-VALUED, TRANSLATION INVARIANT
MEASURES ON N AND THE DEDEKIND

COMPLETION OF *ff

FRANK WATTENBERG

This paper investigates {0, oo}-valued, translation invariant
measures on the set N of positive integers. The main tool in
this investigation is Nonstandard Analysis and especially the
completion, *i?, in the sense of Dedekind of the Nonstandard
Reals, */?. The algebraic and topological properties of *R are
developed and exploited to obtain a classification theorem for
a particularly nice class of {0, oo}-valued, translation invariant
measures on N.

l Introduction. One of the basic problems in mathematics is
to define a measure for a suitable collection of subsets of a given
set X. When X is the real line there is a unique (up to scale) na-
tural, countably additive, translation invariant measure, namely
Lebesgue measure. However, if X is the set of positive integers,
N={1,2,3, •••} then the situation is not so neat. First, since N
is countable the only (up to scale) countably additive, translation
invariant measure is the measure which assigns + oo to every in-
finite set and to every finite set assigns its cardinality. Although,
this measure is very important it fails to distinguish between in-
finite sets in any way. One way to obtain a measure which does
make some distinction between different infinite sets is to apply
Zorn's lemma to find a nonprincipal ultrafilter 3f on N. Such an
ultrafilter is a collection of subsets of N satisfying the following
properties

(1) 0g 3f, Ne^
(2) A 63f9 A Q BS N implies Be&
(3) A, B6 & implies ApιBe&
(4) n{A\Ae^}= 0
(5) & is maximal with respect to properties (l)-(3).
Properties (l)-(3) are the defining properties for. a filter on N.

Property (4) says that the filter is not principal, and Property (5)
says that 3f is an ultrafilter. Property (5) is equivalent to (5').

(5') A U δ e ^ implies 4 e ^ or

Intuitively, one thinks of the sets in £^ as "big" and assigns
them measure one while the sets outside of £2f are given measure
zero. This yields a finitely additive {0, l}-valued measure which is
extremely useful for many purposes. However, this measure lacks
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some properties which are intuitively natural. In particular this
measure is not translation invariant. Indeed, translation in variance
implies that the two sets A = {1, 3, 5, •} and A + 1 = {2, 4, 6, •}
have the same measure contradicting (1), (3) and (5'). The purpose
of this paper is to investigate a class of {0, oo}-valued measures on
N which are translation invariant and satisfy properties (1), (2),
(4) and (5').

DEFINITION I .I. A premeasure on N is a set g* of subsets of
N which satisfies the following properties.

(A) J\Γeg% 0 £ ί f .
(B) A e if, A £ B £ N implies B e g\
(C) A U £ e £ f implies A e g 7 or Be g7.
(D) A e g% k e Z implies A + keξ?

where Z denotes the set {0, +1, —1, +2, —2, •••} of all integers.
The sets in g7 are thought of as "big" and are assigned infinite

measure while those outside of g7 are given zero measure. Thus,
g7 corresponds to a {0, co}-valued, finitely additive, translation in-
variant measure on N.

EXAMPLES 1.2.

( i ) Let g7 be the collection of all infinite subsets of N. Then
g" is easily seen to be a premeasure on N. In fact, g7 is the uni-
que maximal premeasure on N since if F is a finite set, F =
{xl9 x2, , xk} with xx < x2 < < xk, then F is in no premeasure
since if it were, 0 = F — xk would be also, violating (A).

(ii) Let v be a fixed infinite integer in a Nonstandard Model
*i2 of the reals. For A £ N let Av = {a e *A | a ̂  v} and let ||AJi
denote the *cardinality of Av. Then let g"ϊ denote the set of all
subsets AQ N such that ||AJ|/y is not infinitesimal. The collection
Wi is a premeasure.

(iii) Using the notation above, let gy denote the set of all
subsets A £ N such that || Av\\\V~v is not infinitesimal. Then gy is
a premeasure containing gY. Notice the set {1, 4, 9,16, } is con-
tained in gy but not g^.

(iv) Let J?~ be the set of all subsets A £ N such that
Liminf^ββ(||Λ#||/w) is positive. That is, Aeά?" if and only if
ll-Apll/p is not infinitesimal for every infinite v. a?~ is not a pre-
measure. To see this let an be any sequence such that a^^Ka^
and Lim^^αrt+i/αtt = °o. Then let

A =

^ = UK™ O n N.
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Then A, B ϊ ^ but N= AD ΰ e ^ " contradicting (C).
Examples (ii), (iii) and (iv) above indicate the importance of

Nonstandard Analysis in the study of premeasures. This is not
surprising in view of the fact that one way of representing ultra-
filters is via the correspondence between an infinite nonstandard in-
teger v and the ultrafilter 3fv = {A £ JV| v 6 *A}.

In § 5 of this paper we will obtain a similar representation for
a particularly nice class of premeasures. However, in this case the
correspondence will be between such premeasures and integers in
the completion (in the Dedekind sense), *R, of *JB. §§ 2-4 of this
paper are concerned with the construction and investigation of
*R.

One of the uncomfortable facts about ultrafilters is their high
degree of arbitrariness. In fact, except for finite sets (which are
in no nonprincipal ultrafilters) and cofinite sets (which are in every
nonprincipal ultrafilter), given any set A there are infinitely many
ultrafilters containing A as well as infinitely many which exclude
A. Premeasures are also very far from being unique. However,
we do have the following lemma.

DEFINITION AND LEMMA 1.3. Suppose A = {a19 α2, α3, •••} is a
subset of N with aί<a2<az< . Then A is said to be univer-
sally big provided Sup(αw+1 — an) < oo. A is universally big if and
only if A is contained in every premeasure on JV.

Proof.
(=>) Suppose A is universally big, so Sup(αΛ+1 — an) — k < oo.

Then N = \Jϊz&A + i). Let g7 be any premeasure. By (A) N =
Uϊlί (A + i) 6 g% so by (C) for some i, (A + ΐ) 6 ST. Hence, by (D),
Aegf.

(<=) Suppose Sup(αΛ+1 — an) = oo. Then there is an infinite v
such that αp+1 — av is infinite. Let i? be the set of all subsets
EQN such that le e *E such that \e — (αv+1 + cθ/2| is finite, i? is
a premeasure which excludes A.

COROLLARY 1.4. There is no premeasure which is contained in
every premeasure.

Proof. If there were such a premeasure g3 it would have to
consist entirely of universally big sets. But this is impossible by
Example I.2(iv).

However, a straightforward Zorn's lemma argument gives us
the following proposition.
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PROPOSITION 1.5. Every premeasure contains a minimal pre-
measure.

For ultraίilters conditions (1) and (3) imply that if A e& then
N\A$£&. As we have seen this violates translation invariance.
However, for minimal premeasures the following proposition gives
us a weaker but analogous property.

PROPOSITION 1.6. Suppose & is a premeasure. Then the fol-
lowing conditions are equivalent.

(Pi) £? is minimal.
(P2) For every i e g 7 there is a keN such that

Proof. (Pi implies P2) suppose P2 is false. Then there is a set
A e g 7 such that for every k, N\[\Ji=o(A + i)]e&. This implies that
for every S £ g7 and every iu , ik

[(A + i

Let Sf be the set of all subsets E £ N contained in sets of the
form

Let έf' = {E\Ee&*}. It is straightforward to verify that if' is a
premeasure and S ? ' c g \ Thus g7 was not minimal.

(P2 implies PJ Suppose g7 is not minimal. Then there is a pre-
measure g " £ g \ Let Aeg^g 7 ' . By (P2) there is a k such that
M t U t o (A + i ) ] i ^ and hence not in g7' as well. But since A & g7',
UtoCA + i ) ί S7' by Properties (C) and (D). But now N =
{N\[\JU (A + i)]}U[UΪ=o(A + i ) ]gg" contradicting (A). This com-
pletes the proof.

In § 5 we will show that minimal premeasures have additional
desirable properties. However, before continuing the study of pre-
measures we will construct and study the completion of *R.

II. The Dedekind completion of *i2* For the remainder of
this paper *ϋ? will denote the set of nonstandard real numbers in
a /r-saturated, higher order, nonstandard model *^/S of the complete
structure ^ on the reals, R, where K is any cardinal greater than
that of the universe of ^ . If P denotes a given entity in
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*P will denote the corresponding entity in * ^ C . Thus, for example,
*iV denotes the set of nonstandard positive integers and *[ ]: *R->*Z
denotes the extension to *i? of the greatest integer function. We
use the usual notation a ^ i>, for a infinitely close to b, and St(α)
for the unique standard number infinitely close to a finite nonstand-
ard number α. The monad of α, the set {x e *i? | x & a} is denoted,
μ(a). See, for example, [1], [2], [3], or [4] for the necessary ma-
terial on Nonstandard Analysis.

It is well-known that for arbitrary subsets *i2 is not complete.
For example, μ(0) and R are bounded subsets of *i2 which have no
suprema or infima. In this section we use the method of Dedekind
cuts to construct and study a completion *R of *iϋ. The set *R in-
herits some but by no means all of the structure on *J?. For ex-
ample, *iϋ is not a group with respect to addition since if μ denotes
the supremum of μ(0) then μ + μ — μ + 0 — μ. Thus, one must
proceed somewhat cautiously. In this section more details than is
customary will be included in proofs because propositions which at
first glance appear clear often at second glance reveal themselves
to be false.

DEFINITION. II.1. A #-real is a subset a £ *i? such that
( i ) For every aea and b < a, b ea.
(ii) aΦ 0, *R.
(iii) a has no greatest element.

*jβ is the set of all #-reals.
We embed *J? in *R in the obvious way. If ae*R the corre-

sponding element, *α, of *J? is

*α = {x 6 *i? I x < a} .

Condition (iii) above is included only to avoid nonuniqueness.
Without it *α would be represented by both *a and %a U {a}. If E
is a subset of *i? satisfying (i) and (ii) then (E) will denote E if
E has no greatest element and E\{e} if e is the greatest element
of E.

Two elements of *R will be particularly useful for examples,

Φ = U*(-°°,
N

U
neN

For aeR we will often by abuse of notation write %a or even
just a for **α.

If a, β e *i? we define the sum a + β by

a + /3 = {α + b \ a e α, 6 e /3} .
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Note, for example, that μ + μ = μ and φ + φ = φ so + is not a
group operation.

LEMMA II.2.

( i ) +is commutative and associative in #i?.
(ii) Vae*R a + *0 = a.
(iii) Vα, 6 e *R %a + δ) - *α + *δ.

Proo/.
( i ) is clear,
(ii) α + f0 S α is clear.
Now, suppose a e a. Since a has no greatest element 3 δ > α

δ e α.'.α — δ 6 *0 and a = (a — δ) + δ e *0 + a.
(iii) #α + #δ £ #(α + δ) is clear since

x < a, y < δ implies cc + y < α + δ .

Now, suppose x < (a + δ)

α ~ ( a + 6

2

) ~ X < α

and

So

β = [ α - (« + > ) - « ] + [ & _ (« + & ) -

This completes the proof.

DEFINITION Π.3. Suppose a, βeR. Then a <: β if and only if
α C β. Notice, here again something is lost going from *R to *ϋ?
since a < β does ^oί imply α + a < β + a since 0 < μ but 0 + μ —
μ — μ + μ. However, we do have the following.

LEMMA II.4.

( i ) ^is a linear ordering on IB, which extends the usual
ordering on *i2.

(ii) a<>a', β ^ β'-+a + β^a' + β'.
(iii) a < a', β < β' -> a + β < α' + β'.
(iv) If AQ*R is bounded above then

Sup A = Sup a = U a exists in #i2 .
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If AξZ*R is bounded below then

Inf A — Inf a = <Π <*} exists in *i? .
OCBA <x&A

(v) *i? is dense in *R. That is if a < β in *R, there is an
a e *i? s.t. a < % < /3.

Proo/.
(i), (ii), (iv), (v) are clear.
(iii) a < a!, β < βf imply 3 α, a', b, b' e *R

s.t. a < % < V < α' and β < *6 < *6' < βf

:.a + β£*a + *b< *a' + Ψ ^ α' + /9'

.'. # + /3 < a! + β' completing the proof .

Our next task is to define — a for ae*R. By earlier remarks
— a can only have some of the properties of an additive inverse.
In particular, a + (—a) need not be #0.

DEFINITION II.5. Suppose ae*R. Then — a is defined by

LEMMA II.6.

( i ) -(*α) = ' (-α)
(ii) - ( - α ) = α
(iii) a<* β+~* -βS -a
(iv) (-α) + (-£) ^ -(α + /s)
(v) ifae*R, *(~a) + (-β)= -("a + β)
(vi) α + ( - α ) ^ * 0 .

Proo/.
( i )-(iii) are clear.
(iv) Suppose αe(—a) and 6e(~/3).
Then 3αly δx α < α x6( — a), b < b^i — β)

Λ α + /3 < #(-α x) + *(-&,) = *

/. —ax — δiί α + β

:. since α + 6<α 1 -{-δ 1 , α + &
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(v) By (iv) *(-α) + (-/?) ^ - (*α + /9).
Suppose c G — (*α + β)

Λ 3d s.t. c < c 1 6 - ( l α + /3)

Λ - c ^ ^ + /3

.". —c — ag β (since ~c — aeβ

and

α — (d — c) 6 *α imply

— d = α — (cx — c) + ( —c — α) e #α + /3)

: . c + αe —β .

By similar reasoning cx + ae —β.
But — α — (c1 — G) e *( —α).

So

c= - α - (d - a) + cx + a e *(-α) + (-/S) .

(vi) Suppose α e α and be —a

Λ α < —δ so α + 6 < — δ + δ = 0

.'• a + ( - α ) ^ # 0 .

This completes the proof.

Next we consider a few examples which show that Lemma II.6
is best possible.

EXAMPLES II.7.

( i ) μ + ( — μ)=—μ and φ + (—φ)=— ψ. So Lemma II.6 (vi) is
best possible.

(ii) [-(-0) + -φ] = φ + (-Φ)=-Φ < 0 = - ( - 0 ) = - ( ( - 0 ) + <*).
So Lemma II.6 (iv) is best possible.

(iii) One might conjecture that equality would hold in Lemma
Π.6(iv) whenever both α, β were positive. However, the following
a counterexample.

L e t a^*l + μβ = * l - μ t h e n

(-α) + (-£) = *(-D + (-/ι) + '(-1) + μ
= *(-2) + (-/I) + /£

= *(-2) + (-jei) .

But a = *(-oo, 1]UM1) /9 - *(-<*>,
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So

and
_(α + β) = *(-oo, -2]UM-2) = '(-2) + /ι

Λ (-α) + (-£) < - ( α + /3) .

From now on we will write a— β for a + ( — β). Also, by-
abuse of notation we will sometime write a instead of *α. Next we
define absolute value in #i2. Although the definition is completely
straightforward, its properties are not. In fact, the triangle ine-
quality fails.

DEFINITION II.8. Suppose ae*R. The absolute value of α,
written \a\ is defined as follows.

a if a ^ 0

a if α < 0 .

EXAMPLE II.9. The triangle inequality fails in #i?. Let a —
— 1 — μ and β——l + μ then

α + β = - 2 - μ so |α + /31 = —(— 2 - μ) = 2 + μ

| α | = 1 + j " |/3| = 1- μ
and

DEFINITION 11.10. Suppose α, βe*R. The product a β, is de-
fined as follows.

Case (i). a, /S > 0

a / 9 - {a &|0< *a < a , 0 < *δ < β} U * ( - oo, 0] .

Case (ii). a = 0 or β — 0

a /3 = 0 .

Case (iii). a < 0 or β < 0

a /S = | a | \β\ if both a, β < 0

«-iβ= —|a | |/3| if a < 0 , /5 > 0

or a > 0 , /S < 0 .

The bad news for multiplication is that it is not a group
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operation (since φ φ — φ) and the distributive law does not hold in
full generality (if it did *( —l) α = — a would imply a + ( — a) == 0).
The good new is.

LEMMA 11.11.
( i ) Vα, be*R *(αδ) = *α *δ.
(ii) Multiplication is associative and commutative.
(iii) *l a = α *(-l) α = - α .

. (iv) |α | | /8 | = |α/S|.
(v) If a, β, y^ 0 α(/S + 7) = αβ + #7.
(vi) 0 < a < a', 0 < β < β' -> aβ < a'β'.

Proof.
( i ) First, suppose α, b > 0 then clearly *α*δ ̂  *(αδ)
since 0 < α ? < α , 0 < y < 6 implies #2/ < α&. Now suppose

0 < c < ab let

a' = aJ?-

so
*(αδ) ^ #α#δ .

The other cases follow from (iv).
(iv) Immediate from Definition 11.10 and Lemma Π.6(ii).
(ii) is immediate from the definition for a, β, 7 ^ 0 and (iv)

otherwise.
(iii) We may assume a > 0. Clearly *l a<^a. Now suppose

aea then 3a' ea a < af

,\ α/α' < 1 so a/a' e *1

and

a'-(a/a') = αe*l α .

By the definition * ( - l ) α = ~ ( * l α ) = - α .
(v) Clearly a(β + 7) ^ aβ + ay.
Suppose d e aβ + ay

.'. d = αδ + α'c α , α ' e α δ 6/3 c 67

Without loss of generality we may assume a <; α'.
Hence d = ab + a'c <^> a'b + α'c = α'(δ + c) e a{β + 7).
(vi) 0 < α < α ' 0 < / 3 < / S ' implies



{0, oo}-VALUED, TRANSLATION INVARIANT MEASURES ON N 233

3 α, a', b, V s.t. 0 < a < *α < V < a!

0 < β < *δ < Ψ < β'

/. aβ ^ \ab) < \a'V) ^ a'β'

Λ α/S < α'/S' .

This completes the proof.

The next step is to define or1. As we have seen above a-1

cannot have all the properties of a multiplicative inverse.

DEFINITION 11.12. Suppose ae*R and a ^ 0 then a~ι is defined
as follows.

Case (i). a > 0

a-1 = InfίcrMO < aea} .

(ii). a < 0

LEMMA 11.13.
( i ) ( t a )-i = ' ( a - 1 ) .

(ii) ( a - 1 ) - 1 ^ .
(iii) 0 < a ^ /3 => /3"1 ̂  a~\
(iv) a, /S > 0 => (a-^iβ-1) ^ (aβ)-\
(v) Va 6 *J?, a Φ 0 implies (*a)-1/3~1 = Caβ)~\
(vi)

Proo/.
( i )-(iii) are clear.

(iv) Suppose # 6 (cc~ι)(β~ι)

/. x = hg he a-1, geβ-1 , h, g > 0

Λ V α e α , α > 0 f e ^ α " 1 , V δ e / 3 , byOg

.'. h-'^a , g-1 ^ δ

/.Vie α/3 (fe^)-1 ^ t

/. V teaβ t > 0 implies %

/- ^ ^ (α/3)-1.
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(v) We may assume a > 0. The case for a < 0 follows from
this case.

By (iv) Cα)-1/?-1 ^ (*aβ)-\

Now suppose x e (*aβ)~ι .\ ly e ^aβ)'1 x < y

ΛV&6/3, 6 > 0 y<: (ab)-1

Λ ay <: 6-1

(vi) We may assume a > 0. Suppose α 6 α, δ e or1 and α, 6 > 0

ί>< α-1

α& < aa~ι = 1

/. ααr1 ̂  *1 .

This completes the proof.

EXAMPLE 11.14.
( i ) φ-1 = μ, μ-1 = φ.
(ii) ^~ x = φμ — μ < 1 so Lemma Π.13(vi) is best possible.
(iii) μφ = μ
So (μφ)-1 = μ-1 = φ> μ~ιφ~ι = φμ = μ.
So Lemma Π.13(iv) is best possible.

ΠL The topology of #i?* Topologically, *iϋ has many pro-
perties strongly reminiscent of R itself. We proceed as follows.

DEFINITION III.l. Suppose Ug=*R. Then U is open if and only
if for every ueU, la, βe*Ra < u < β such that

u 6 (a, β) £ U .

(Notice because of the peculiarities of addition this is not equivalent
to VueUlε > 0 such that (u - ε, % + ε) £ Z7.)

LEMMA III.2.
( i ) *R is dense in R.
(ii) *R\*R is dense in *i2.

Proof.
( i ) is just Lemma Π.4(v).
(ii) Suppose UΦ 0 is open.
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Then 3 a < b s.t. (α, 6) £ U.
We may assume α, 6 e *iϋ.
Let a — Infw6tf (a + (b — a)/ri).
Then by a straightforward saturation argument a e (α, b) and

α £ * # .
This completes the proof.

LEMMA III.3. Suppose A £ #i2. Then A is closed if and only if
( i ) VEQAE bounded above implies SupEeA, and
(ii) VEQAE bounded below implies infEeA.

Proof
(=>) Suppose A is closed and E £ A is bounded above.
Let s = Sup 2i7.

If s ί A 3 α, /3 s.t. s 6 (α, /5) and (α, /5) Π A = 0

/. (α, β) Π # = 0 .

So s cannot be the Sup E

.\ seA .

(ii) is proved similarly.
(<=) Suppose x 0 A.
Set

a = Sup{£ I £ < #, ί e A} ,

and

/3 = Inf{ί|α? < t, teA} .

Clearly α ^ sc ̂  β and (i) and (ii) imply a < x < β.
Clearly (α, /3) Π A = 0 .
Thus the complement of A is open.
This completes the proof.

PROPOSITION III.4. *jξ is connected.

Proof Suppose *R = A U B where A, 5 Φ 0 are both closed
and A i l 5 = 0 .

Choose α e i , beB. We may assume α < 6.
Let & = Sup{£ 6 AI [α, t] £ A}.
Note, x exists and is <̂ &.
Since A is closed xeA. Hence x Φ b.
Since B is closed 3 a, β a < x < β
s.t. (α, β) Q A .". 3 β x < e < β s.t.
[£, e]Q A .\ [α, e]Q A contradicting the definition of #.
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COROLLARY III.5. (Intermediate Value Theorem). Suppose
f: ia> β] —> *R i>s continuous and f(a) < 7 < f(β). Then 3 7' e [α, β]
such that f(y') = 7.

Proof. Straightforward.

PROPOSITION III.6. For a < β in *J?. [α, β] is compact.

Proof.
Let ^ = {Uσ}σeS be an open covering of [a, β].
Let A = {x e [α, /3]|3^, , σfc [α, a?]S ί/^U U U,b}.
A straightforward argument shows A is both open and closed,

so β e A completing the proof.

COROLLARY III.7. Suppose A £ *i?. Then A is compact if and
only if A is closed and bounded.

Proof. Straightforward.

COROLLARY III.8. *R is normal.

Proof. Straightforward.

DEFINITION AND LEMMA III.9.
( i ) Suppose ae(—φ,φ). Then there is a unique standard x>

called ST(a), such that x e [a — μ, a + μ].
(ii) a ^ β implies ST(a) S ST(β).
(iii) ST is continuous.
(iv) ST(a + /S) = SΓ(α) + ST(β)
ST(aβ) = ST(a)ST(β)

α-1) - [SΓ(α)]-1 if α £ [ - μ , //].

Proo/.
( i ) ST(a) is clearly unique if it exists.
Let X= {xeR\*x£a}.

Since X is bounded above X has a supremum x.

a ^ x + μ since α > x + μ

implies 3 a e *R x + μ < α < α

.*. α? ^ Sup X .
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Also, a ^ x — μ since a < x — μ
implies 3αe *ϋ?, a <*a < x — μ
implies X is bounded by St(a) < a?

Λ a e [x — μ, x + μ] .

(ii)-(iv) are completely straightforward.

Despite the fact that the topology on *R is quite nice, one must
still be cautious. For example, mappings which one might expect
to be continuous may not be. In particular, the map a\->a + (—a)
is not continuous since if it were it would be zero since it is zero
on the dense subset *R. The next two propositions show that the
problem is not in the map α κ - α but in the map {a, β) H* a + β.

PROPOSITION III.10.
( i ) The map a\-+ —a is continuous.
(ii) The map a —> or1 is continuous.

Proof.
( i ) Suppose —ae(β, 7) then

α e ( - τ , -β)

and

0 e ( - 7 , - / 9 ) ~ - 0 e (/3, 7) .

(ii) The proof is identical.

PROPOSITION III. 11. The maps (a, β) H> a + β and (a, β) H-> α /S
continuous.

Proof. We will show addition is not continuous. The proof for
multiplication is similar. Notice (φ, —φ)\-+ —φ.

Now, (—00, —1) is an open neighborhood of —φ.
Suppose (α, β)x(a', β') is a basic open neighborhood of (φ, —φ).

We may assume a and /3' are finite. Hence, there is a finite ae*R
such that (α, -α)e(α, β)x(a', β').

But (α, -α)f->Oί (-oo, -1).
The next question we wish to consider is when a "continuous"

function on *i2 can be extended to *i2.

THEOREM III.12. Suppose f: [α, 6] -+ A £ *R is internal, ^conti-
nuous, and monotonic. Then f has a unique continuous extension
*/ : Va, *6] -^ A S R, where A denotes the closure of A in #i2.

Proof.
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( i ) Uniqueness is immediate since [α, 6] is dense in [#α, #6].
(ii) We may assume / is monotonically increasing.
Define *f(a) = Sup{/(aOI« ^ oc and xe[a, 6]}.
(#) Cίαim. */(α) = /3 = Inf{/(a?) | a ^ a? and a? 6 [α, 6]}.
Clearly */(α) ^ /s.
Now suppose */(α) < β .". 3 y 6 *i? */(α) <y < β.
Then by the *Intermediate Value Theorem 3 # e [α, 6] such that

But either x < a or x }> a and either case leads to an immediate
contradiction.

Now suppose θ e [\ *&] and *f(θ) e (a, β). In view of
(#) lu,ve*R, u<θ<v such that α < f(u) < f(θ) < f(v) < β.
Hence */ maps (%, *v) into (a, β).
Thus, */ is continuous.

COROLLARY III. 13. The conclusion above holds if [a, b] is re-
placed by (α, 6) even if a= — °o or b— -\-°o.

COROLLARY III.14. The conclusion above holds iff is piecewise
monotonic (i.e., the domain can be decomposed into a finite (not
* finite) number of intervals on each of which f is monotonic).

Next, we consider some examples showing that the assumptions
above are necessary.

EXAMPLES III. 15.

( i ) The internality of / is needed (via the intermediate Value
Theorem). Consider the function

x xe μ(0)

1 + x *x > μ

— 1 + x %x < ~μ

which clearly has no continuous extension to *β.
(ii) Let v be a fixed infinite *integer. The function

sinx

0

x I < 2πv

x I > 2πv

can not be defined at φ, but is *piecewise monotonic.

PROPOSITION III.16. Suppose f, g are "continuous, piecewise
monotonic functions then

( i ) f°Q is also and
(ϋ) \f°g) = tf°'g.
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Proof.
( i ) is straightforward.
(ii) follows from continuity and the fact that *i? is dense in

*R.

IV. ^-Integers* The set *R has within it a set *Z of #-integers
which behave very much like *Z inside *R. In particular the
greatest integer function *[ ]:*R-+*Z extends in a natural way
to *[ ]: IB -• %Z. To simplify the notation we will denote *[ ] by [ ].

DEFINITION AND LEMMA IV.l. Suppose a e #i?. Then the follow-
ing two conditions on a are equivalent. If a satisfies these condi-
tions a is said to be a ^-integer. The set of #-integers is denoted
*Z and *Zf) [#1, °°) is denoted *N.

( i ) a == Sup{*v I v 6 *Z and v <: α}
(ii) α = Inf{*v\ve*Z and α ̂  v).

Proof.
Let

/Si = Sup{#v I v 6 * ^ and x; ̂  a)

and

/S2 = Inf{*v|VG*Z and α ^ v} .

Clearly β, ^ /32.
Suppose β1 < β2.

Then 3 b e *i? s.t. & < *6 < /52

.'. [b] < α and [6] + 1 > α

Λ /31== *[&] and & = #[6] + 1

so a Φ βλ and a Φ β2.
This completes the proof.

LEMMA IV.2.

( i ) *Z is the closure in IB of *Z.
(ii) *iV is the closure in #i2 of *N.

Hence both %Z and *iV are closed with respect to taking Suprema
and Infima.

Proof We prove (i), (ii) follows immediately.
Clearly *ZQ*Z.
Suppose a & *Z.
Let βx = Snφ e *Z\ v S oc)
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β2 = lτd{v e*Z\a ^ v}.
Since a g % & < α < /32.
But, clearly (βίf β2) Π *# = 0 .
So, α£ * ^ which completes the proof.

LEMMA IV.3. Suppose α, βe*Z. Then,
( i ) a + βe'Z.
(ii) - α e ^ .
(iii) α /3 6*^.

Proof. Completely straightforward.

CONSTRUCTION IV.4. Suppose ae*R. Then, we define [a]e*Z

by

[a] = Sup{p|^ 6 *Z, i; ̂ a} .

There are two possibilities.
( i ) {v\v 6 *N, v ^ α} has no greatest element. In this case

[a] = a since [a] < a implies 3 a e *ϋ? such that [a] < a < a. But
then [α] < a which implies [a] + 1 < a contradicting [a] < a <; [α] + l.

(ii) {v\ve*N, v <Ξ α} has a greatest element, v.
In this case [a] = ve *N.
Notice in case (i) [a] = a and in case (ii) [a] <; α < [a] + 1.

LEMMA AND DEFINITION IV. 5. Suppose A is a standard subset
of N. Suppose v e *N/*N. Then the following are equivalent.

( i ) v = Sup{α e * A \ a < v).
(ii) v = lτιt{ae*A\v< a}.

When these two equivalent conditions hold, v is said to be in the
tail of A, written veτ(A).

Proof
Let /Si = Sup{α 6 * A \ a < v)
and β2 = Inf{α e *A\v < a}.
If βι < β2 then 3 b e *R such that βx < 6 < ^ 2 .
Let A = {&!, α2, } ax< α2 <
Let |0 be the greatest integer such that ap < 6. (^ exists since

6 e *B.)
Thus ap ^ /Si and ap+1 ^ /32.

So α^ = /3i < /52 = α, + 1 .

But now since v e *iV/*iVr

v Φ ap j ap+1 .

On the other hand if βx = /32 then v — βx = β2.
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EXAMPLES IV. 6.

( i ) A is infinite <=> <j> e τ(A)<=> τ(A) Φ 0 .
(ii) τ(A) = τ(N) <=> A is universally big.

Proof.
( i ) is clear.
(i i) First, suppose A is not universally big. Then

Sup(α7l+1 — an) — oo and there is an infinite v such that αv+1 — αv is
infinite.

Let a = Su^neN(au + n).
Then a £ τ(A) but a e τ(N).
Now, suppose Supn(αn+1 — an) = k < c>o#

If α e τ ( N ) then a e*N/N and the set {v e *N\v < a) — E has no
maximum. Thus v6E implies v + 1, v + 2, •- ,v + keE. Clearly
Sup{α 6 *A\a < a} <̂  α.

If Sup{αe*A|α < α} < α then there is an xe*R such that Sup
{ae*A\a < a} < x < a.

But then [x] < a and

and at least one of these ^integers must be in *A contradicting
Sup{α 6 *A|α < a} < [x] + 1.

This completes the proof.

PROPOSITION IV.7 Suppose A £ N. Then τ(A) is closed.

Proof. Suppose a$τ(A). There are two cases.
( i ) a = *α, a e *N

then (*α - 1/2, #α + 1/2) Π (A\{α}) = 0 and since τ(A) £ A\{α},
O - 1/2, #α + 1/2) Π r(A) = 0 .

(ii) α ̂  Sup{αe*A|α < a}.
Hence 3 x e * R such that

Sup{α e*A\a < a} < x < a .

Hence, {v\av < a;} being an internal set in *iV has a maximum v.

Λ (au, α,+1) Π *A = 0

.'. (αw αv+1) Π r(A) = 0

But a 6(αv, α̂ +x).
This completes the proof.

LEMMA IV.8.

( i ) aeτ(A) implies VneZ a + n = a.
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(ii) VneZ τ(A) = τ(A + n).
(iii) A £ β implies τ(A) £ τ(B).
(iv) τ(Af]B)Qτ(A)f]τ(B).
(v) r(4U5) =

Proo/.

( i ) ae τ(A) implies a ί *N and

a = Sup{v Θ * AI v < α} .

So {ve*A|v < α} has no maximum.

This is sufficient to imply (i).
(ii) follows from (i)
(iii) and (iv) are immediate.
(v) If a = Sup{v 6 *(A U 5) |v < a} then either

a = Sup{y 6 * AI v < α}

or

so a e τ(A) or a e
This completes the proof.

Notice that τ(A) Π τ(B) need not equal τ(A) Π r(J5). In fact, if
A = {1, 3, 5, •} and 5 - A + l then r(A)ΓΊr(J?) - W\*ΛΓ but AfΊ^= 0
so r(AnJS) = 0 . However, given A, B £ iV we can construct a set

such that τ(AAB) = τ(A) Π τ(B) as follows.

CONSTRUCTION AND LEMMA IV.9. Suppose Alf A2, , Ak are in-
finite subsets of JV. Write, An = {α%1, αΛ2, •} with αnl < αu 2< .
Then we define A^A^A Λ Λ = {̂ , c2, •} as follows.

cw+1 = least αp i such that cn < α̂ y where p = n + 1 (modulo

Then,

Λ Ak) = τ(Aχ) Π τ(A2) n Π τ(Ah) .

Proo/.
( i ) τ(AxΛ A2Λ Λ A,) £ τ(Λ) Π τ(A2) Π Π
Suppose α e τ(A1AA2A ΛAk). Then

e AλΛA2Λ -ΛA^Ic < a} .

Hence the set {c e AXΛA2Λ Λ Ak\c < a} has no greatest element.
By the construction of A1AA2A- " AAk this implies
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a = Sup{α 6 An \ a < a} .

So,

α 6 τ(Ax) n τ(A2) n Π τ(Ak) .

(ii) τ(Λ)Πτ(Λ)n Πr(Λ) £ τ(ΛΛA2Λ ΛAfc).
Suppose a e τ{Ax) n r(A2) ΓΊ Π τ(Ak).
Hence a — Sup{α 6 *An\a < α}.
Now, suppose a > Sup{c e *(A1ΛA2Λ ΛAfc)|c < a}.
Then, 3 z 6 *i2 such that

α >x > Sup{e e*(AιΛA2Λ ΛAk)\c < a} .

Let p be the largest *integer such that cp < x. Hence cp < x < cp+1.
Without loss of generality we may assume | O Ξ 1 (modulo k). But
since a = Sup{α 6 *A2|α < a}, cp+1 < a. This contradiction completes
the proof.

V* Premeasures* The work of the preceding section immedi-
ately gives rise to a large number of examples of premeasures.

DEFINITION AND EXAMPLES V.I. Suppose ae*N/*N.
Let g"α be the set

%fa = {AQN\aeτ(A)} .

It is an immediate consequence of Lemma IV.8 that ifα is a pre-
measure.

Notice, for example, that g^ is the maximal premeasure of all
infinite sets.

Premeasures of the form ί?α have two additional interesting
properties.

DEFINITION V.2. Suppose A, Bξ^N; A = {alf a2, •}, B =
{&i, K •}» αx < α2 < , bx < b2 < . Then B is said to be dense
in A iff Vw [an, an+1) Γ\BΦ 0.

Suppose g3 is a premeasure. g? is said to satisfy property
(E) iff

(E) vAei f , BSisΓ if B is dense in A then B e g 7 .
Suppose g7 is a premeasure. g7 is said to satisfy property

(P) iff

(F) V41? A2, ••-, A*egf , ΛΛΛΛ Λ Λ e g 7 .

The following examples show the properties (E) and (F) are in-
dependent of the defining properties (A)-(D) for premeasures.

EXAMPLES V.3.
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( i ) Let slf s2, be an increasing sequence such that

Let

A = u [β2»-i, O n isr

n=l

Notice as w —> oo 11 An \ \/n fluctuates back and forth between close to
zero and close to 1 and that ||J5Λ||/w = 1— ||AJ|/w. Choose an in-
finite V6*ΛΓ such that || A, \\/v ~ 1/2. Hence || By \\\v ** 1/2.

Let ^l^{E<^N\\\Ev\\lvΦϋ\.
Hence A, Be &f.
But AΛB = {81982, •••jίg'ί.
Thus Wi does not satisfy Property (F).
However gY does satisfy Property (E) since D dense in C

implies V Λ H B . I I ^ I I C . I I .

(ii) Choose an infinite ve*N. Let

gf = {A£iV|3ee*A, | β - v2| is finite} .

In particular the set A = {1, 4, 9, 16, -, w2, •• }eg ?.
Let JB = {2, 6, 12, - .[αm+1 + αJ/2, . •}.
Then 1? is dense in A but B£&.
Hence g* does not satisfy Property (E).
On the other hand i? does satisfy Property (F).
Suppose Alf A2, , Ak e g% C = A1ΛA2Λ ΛA*.
C = {Ci, c 2 , •••}.

Let d be the largest element of the internal set

If |c< — v2| is finite Ceg 7 and we're done.
If I ct — v21 is infinite we may assume without loss of generality

that et e *A1.
Hence ei+1 is the least element of *A2 wihch is greater than ct.

But *A2 has an element b such that |6 — v2\ is finite. So |c ί + 1 — v2\
must also be finite.

This brings us to the following representation theorem for
some premeasures.

THEOREM V.4. Suppose & is a premeasure. Then there exists
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an ae #iV\*iV such that g7 = g*α if and only if g* satisfies Pro-
perties (E) and (F).

Proof.
(==>) By Lemma IV.9 gfα satisfies Property (F).
Now, suppose A e g*« and B is dense in A. Since A e ^

α = Sup{α 6 * A | a < a}

and since α ί *JV, {αe*A|α < α} has no last element. Thus since B
is dense in A

a = Sup{6e*J5|6 < a}

so Be^a and $?a satisfies Property (E).
(W) ( i ) Claim. Property (E) implies that V # e g % v S g g 7 ,

Vwe JV

lk[bk,bk+n)f)S= 0 .

Proof Suppose no such k exists. Then S is dense in each of
the sets Bt = {&„ &<+n, δ i + 2 w, •} i = 1, 2, , w

But JB = 5X U # 2 U U Bn.
Thus 3 i such that jB< e g\
But now Property (E) implies S e g" contradicting S g g" and

completing the proof.
(ii) Claim. Suppose ^ # 2 , , Bn e g3 and Slt S2, , Sfc g g7.
Let B = BιΛB2Λ---ΛBn = {b19 68 }.
Let S = iS1US2U UiS4.
Then VpeN ig such that [6ff, 6 p + f l )nS = 0 .

Proof By Property (F) 5 e g 7 and the claim follows from (i).
(iii) By saturation choose a *finite set {S^ B2, , JBJ Q *g*

containing *JB for every J5 6 g7.
Also, by saturation choose a *finite set

{Slf S2f , S2} £ *(P(N)\&) containing *S for every S i g7 .

Let

and

Let JS = {δj, δ2, } with δx < δ2 <
By *(ii) 3g such that

where λ = 2Λ
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Let a = Sup{&,+ni, | n e N}.

Claim, g* = g^.
Notice, first if T& g7 then * T g S and hence

[δ,A+.λ)n*r= 0 .

So α ^ S u p { ί e * T | £ < a} ^ &,.
Thus, ^ c g ' ,
Conversely, suppose T e g 7 . Thus for some p,*T — Bp.
But for each w

^ n [&,+«* bg+in+1)v) Φ 0 .

Hence a = Sup{# 6 *T|x < α}.
Thus, Γ e ^ a n d ^ g g7,.
This completes the proof.

LEMMA V.5. Suppose g7 is any premeasure. Then there exists
an ae *N/N such that ^ S g 7 .

Proof. If S & %? t h e n S is not universally big so Sup(s n + 1 — s w ) = °°.

Hence t h e r e are infinite v,Xβ *JV such t h a t

[v, v + λ] n *S = 0 .

Hence, if Sl9 S29 —-,Sk<£& then there are infinite u, λe*JNΓ such
that [v, v + λ] Π (S, U S2 U U Sk) = 0 and by a straightforward
saturation argument there exists an infinite v, λ e *iSΓ such that

Let α = Sup^etf v + )?.
Then Sg g7 implies S ? ^ so that g ^ C g ,̂ completing the proof.

COROLLARY V.6. Suppose & is a minimal premeasure. Then
( i ) there is a ae*N/*N s.t. gf = gf«.
(ii) g7 satisfies Properties (E) αm£ (F).

Proof. Immediate.

EXAMPLE V.7. Notice Properties (E) and (F) do not imply g* is
minimal since g^ has properties (E) and (F) and is not minimal.
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