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We define the entropy function S(p)=Lim,_.2n 2nN(n, p),
where N(n, o) is the number of distinct partial order relations
which may be defined on a set of #» elements such that a
fraction p of the possible n(n—1)/2 pairs are comparable. We
derive upper bounds to S(p) to show that S(o)<(1/2)In2 if
p=. 699.

I. Introduction. In an earlier paper [1, hereafter referred to
as I] we have studied the asymptotic enumeration of partial order
relations defined over a set of n distinct objects, subject to a con-
straint that a given fraction o of the n(n — 1)/2 pairs are com-
parable. Let this number be denoted by N(n, o). We showed that
N(n, p) increases as an exponential of »* for large n (except in the
trivial cases when p is either zero or one), and defined a function
S(p) by the equation

(1) S(p) = Lim 2%~ 1n N(=, p) .

This function S(o0) may be called the entropy function as it is re-
lated to the thermodynamic entropy of a lattice-gas with a long-
range three-body interaction. For details of this equivalence, the
reader is referred to I.

Using upper and lower bounds on S(0), we showed that S(p) is
a continuous function of p for the allowed range of p,0<p < 1.
It is, however, not an analytic function of p. It was proved that

1 L1 3
S ==—1n 2 f —<p< =2

(2) () g n i 4_,0_8

and

(3) S(p)<%ln2, if 0<.083 orif p=48/49.

The equality in (2) could be proved, because in this range of p,
we derived a lower bound to S(p) which coincides with an earlier
known p-independent upper bound due to Kleitmen and Rothschild
[2]. We conjectured that the lower bound (derived in I) gives the
exact value of S(po) for all p. This, however, could not be proved
because the corresponding upper bounds to S(o) were too weak. We
have subsequently improved the upper bounds. Using these improv-
ed bounds we can show that
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(4) S(p)<%ln2, if p<.154 or p=.699.

While these bounds fall short of the conjectured result

(5) S) <<z, if o<t orif p>2,

2 4 8
they are considerably better than the earlier bounds. These can be
improved somewhat by a more extensive numerical calculation. A
substantial improvement will perhaps require a different technique.
In this paper, we report these bounds.

More recently Kleitman and Rothschild [3] have been able to
determine S(p) exactly in the range 0 < p < 1/4. Their results, in
particular, imply the first part of the inequality (5). Their result
is obviously better than our bound for p < .1564. However, their
method does not seem to be generalizable to higher o values.

II. Preliminaries and notation. Consider a set .&5 consisting
of n distinet elements. Let R be a partial order relation defined on
this set. We shall use the notation a = b(a, be.5”) iff a is related
to b under R. We write a>b iff ¢ = b and a = b. A pair (a, d) is
said to be comparable iff a = b or b = a. It is nontrivial if a +# b.

An ordered sequence a,, a,, a, ---,a; of elements of .5 con-
stitutes a chain of length [ iff a, >a, >a;--- >a;. The rank of
an element a, denoted by 7(a), is defined as the length of the long-
est chain in % which starts with a. By »(T) we shall denote the
specification of rank of each of the elements of TC.5”.

The relation R induces a decomposition into maximal disjoint
chains C, C,, ---, C,. (This decomposition need not be unique.) The
chains C, are constructed as follows: C, is a longest chain in .
C, is a longest chain in . —C,. C, is longest chain in & —C, —C,,
and so on. The process is continued till all the elements of & are
exhausted. The length of a chain C, will be denoted by I,. Clearly,

we have [, =1, = I;, ---. Also, any element of a chain C, is incom-
parable to at least one element in each of the preceding chains
Cj’ j < ’i.

Let N,(m) be the number of different partial order relations R
definable over .5, having exactly m nontrivial, comparable pairs.
Let 2,(z) be the generating function for N,(m), i.e.,

(6) 20 = "3 Nymyar .

Let A and B be disjoint, ordered subsets of .. By an
ordered subset here we mean a subset whose first, second elements
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are identified. Let |A| =17 and |B| = j. Also let ¥ be a mapping
from the set A U B to the set of integers. Let R be a partial order
relation on A U B. We say that B is consistent with the maximal
chain structure {4, B} and the rank function # iff there exists a
partial order relation R defined over & such that

(i) R is the restriction of R to the domain A U B.

(ii) A and B are chains under some maximal chain decomposi-
tion of & under R.

(iii) For all x€ AUB, 7(x) is the rank of x under R. We now
define

P,(¥; A, B) = The number of distinct partial order relations R,
which are consistent with the maximal chain strue-
ture {A, B}, and the rank function #, and have
exactly & comparable pairs of the form (a, b) where
ac A, beB.

Clearly, P,(¥; A, B) depends on the chains A and B only through
their lengths. Hence, we may write

(7) P75 A, B) = P;; ,(F) .

We further define the generating functions P,;(z) by

(8) Py = Pu@) = 3% Pus
where
(9) Pj; = max [Py;,(F)] .

r

In eq. (9), the maximum is taken over all possible rank assign-
ments. We shall assume that » is sufficiently large so that P;, is
independent of mn.

These polynomials P;;(z) are easily determined for small values
of ¢ and j, by exhaustive enumeration. Some low order polynomials
are listed in the appendix, where an outline of the method used for
their determination is also given. We used a computer program to
determine all the polynomials for ¢, j < 6. For higher values of <
and j, the computation time increases very sharply.

We define polynomial P;;(z) similarly. These are generating
functions Pij,,,difMax: P,; (7, where P,;,(7) is defined similar to
P,; .(7), except that we do not require the chains A and B to be
maximal. These too were determined by exhaustive search.

The general properties of these polynomials P,;(z) and P,(z) are
not very obvious. For large 7, with /5 held fixed, P;;(z)z~% is ex-
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pected to behave like [¢g(z)]’, where g¢g(z) is some (as yet unknown)
function of z. The study of these polynomials is interesting on its
own, but not really necessary for our discussion here.

III. The upper bound. We may now state the main result
of this paper.

THEOREM. Let z, o, fi by any nonnegative real numbers satis-
fying the following conditions:

(i) >qifi=1.

(i) 0=p=1.
Then S(p) = Max s, [X:,; fif;In P;(2) — plnzl.

Proof. Consider a particular decomposition of & in maximal
disjoint chains C,, C,--- C,. Let the lengths of these chains be
l,1l,---1, respectively, where I, >1,=--- =1,. Consider, also, a
rank function »(5”).

Let R’ be a binary relation defined over .& satisfying the follow-
ing property for all 7 and j, the restriction of R’ to the set C,UC;
is a partial order relation consistent with the maximal chain struec-
ture {C, C,--- C,}, and the rank function »(.5”). Clearly, not all such
relations R’, define a partial order relation over the full set &2 The
enumeration of all relations satisfying the above property, gives
an upper bound on the enumeration of all partial order relations R
satisfying the above property. The relations R’ are easily enumer-
ated in terms of the polynomials P,;(z) defined earlier, and we get
quite easily

(10) 2.(=) = > 3 [#=H T P (3)]
g &) 5

In this inequality, the summations over {C,} and over (.%”) are over
all possible chain decompositions of . and all possible rank func-
tions 7(.$”). The term z%% V2 comes from the [,(I, — 1)/2 compar-
able pairs in the chain C;, and P,;(2) is the contribution of the
mutual pairs between the chains C; and C;,. The prime over the
product sign indicates the fact that < = j term is excluded from
the produet. This inequality (10), clearly holds term by term for
each power of z.

Now, the rank of an element in % can take values 1 to n.
Hence total number of possible rank assignments is certainly less
than #*. Also, the total number of ways, the set & may be
broken into disjoint subsets is at most **P,. Hence we get from
the inequality (10)
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(11 2.() £ "Pn" Max [55G 02 1 Py(2)]
{8} (2,5}

where the maximal is taken over all possible partitions {l;} of =

Ll =m).
2.(2) is a polynomial in 2z with positive coefficients. Hence for
all real positive values of z

(12) N,(m) = 2,(2)z™™ .
Taking logarithms of both sides we get
In N,(m) < In (n"™ *P,)
(13) + Max [Zl(lz 1)lnz—mlnz—FZ‘,’InP”J(z)]

i) i (2,4

In the chain decomposition {C;}, let the chains of length ¢ be F) in
number. Since the total number of elements is #, we have

(14) S iF, =mn.

The double summation on the right hand side of the inequality (13)
may be rewritten as

(15)  ShPye ==l
(Z,9) i 2

Din P2 + s, 1’% In Py(2) .
*g

Substituting in (13) and taking the limit of large n, with f; = F/n,
we get

(16) S(p) = Max [3 fofy In P@) — pIn 7],

which proves the theorem.

This theorem is not very useful for numerical calculation of
upper bounds on S(o), as knowledge of all the polynomials P,;(z) is
required. TFor explicit calculation we use the following modified
version of the theorem.

THEOREM. Let p be any positive integer, and let 2z, f, (1 =1 to
D), be any monnegative real numbers satisfying the following con-
ditions:
amn (1) 2 ifi=1,
(ii) 0=p=1,

then
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(18) S(o) = Max| 3 £f;inQu() — plnz |,
where

(19) Q@ =Py®), if G=p and j+p),
(20) Q) = Py@), iff G=p or j=p).

Proof. Express . as a union of disjoint chains of length less
than or equal to ». Then the chains of length p need not be max-
imal. Rest of the proof is as before.

We use variational calculus to maximize the right hand side of
inequality (18), and then minimize the result with respect to z, to
get the best upper bound. The constraint (17) is taken care of by
a Lagrange multiplier. This gives the equations

(21) p=2-2 3 £f,InQ,@),
02 =1
and
(22) 3 [0 Qu@1f; =i, i £i>0.

Here )\ is the Lagrange multiplier. Corresponding to any value of
z, we first determine f; by solving the linear equations (17) and (22);
and substitute in (21) and (18) to get the corresponding value p
and S(p). By varying z, bounds for different values of o are ob-
tained. If for any value of 2, the solution of equation (17) and (22)
gives negative values of f; for some 4, we choose that f, to be ex-
actly zero and variationally optimize over the remaining variables.
For p = 6, the numerical results show that

23) S(p)<—12—ln2, if o<.54 orif p>.699,
which is the promised result.

APPENDIX

Let A={a,a, ---,a,} and B=1{b, b,, --+, b;}. The rank func-
tion ¥ on AUB may be specified by a list of the form a,a.b,a:b, - -,
where the elements are arranged in order of decreasing rank. Con-
sistency with the rank » implies that no element can be greater
than any element preceding it in the rank list. The exact values
of ranks assigned are not relevant. The total number of rank func-
tions to be tested is thus *“+/C,.

The relation R may be represented by two lists, of the same
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form as the rank list. For x,ye AUB, x =y if x appears before y
in both of these lists. The computer program generates all pos-
sible relations R, and rejects those inconsistent with the rank list.

To save computation time, the maximality constraint was replaced
by the following weaker constraint: If ¢ > j, then a, % b4+, and
a, < b, for all p. If this condition fails, clearly the A chain is not
maximal, as we can form a chain of length (¢ +1) from AUB.
Clearly, this relaxation of constraints does not affect the validity
of the bounds derived. We list below some lower order polynomials
P;;(z) and P;;(z).
P,(z)=1
P,z) =1+ 22
Py(z) =1+ 22 + 2°
Pz) =1+ 22 + 22°
P,y(z) =1 + 2z + 52° 4 62° + 4z2*
Py(z) =1 + 22 + 52° + 62° + 62* + 42° + 2°
P(z)=1+z
P,z) =1+ 2z + 2°
Py(z) =1 + 2z + 32° + 42° + 32* + 22° + 2°
Py(z) = 1 + 22 + 52° + 82° -+ 14z* + 182° 4 222° + 222" + 212° + 162°

+ 102" + 42" + 2*°
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