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A dynamical system 77 on a separable metric space, which
has a globally asymptotically stable critical point p, can be
embedded into a radial flow p on U if and only if p is uni-
formaly asymptotically stable. Moreover, if 77 can be embedded
into p, then there is a locally compact subset Y of /2 such
that 77 can be embedded into p restricted to Y.

In [1] the author showed that a dynamical system on a locally
compact phase space, which has a globally asymptically stable critical
point, can be embedded into the radial flow on l2 defined by zpt = cιz.
Here we generalize this result and show that a dynamical system Π
on a separable metric space which has a globally asymptotically stable
critical point p, can be embedded into the radial flow p on l2 if and
only if p is uniformly asymptotically stable. Moreover, if 77 can be
embedded into p, then there is a locally compact subset Y of l2 such
that 77 can be embedded into p restricted to Y.

A dynamical system on a topological space X is a continuous
mapping Π: X x R-> X such that (where xΠt = Π{x, t))

( X) xΠO = x for every x e X,
( 2 ) (xΠt)Πs = xΠ(t + s) f o r e v e r y xeX a n d s,teR.

For A c X and B a R, AΠB will denote the set {#77£: a ; e 4 , ί e ΰ } .
In the special case B — R we will write C(A) instead of AΠR. An
element x eX is called a critical point of 77 if C(#) = {#}. A subset
A of X is invariant if C(A) = A. We will let R+ denote the non-
negative reals.

A compact subset ikί of X is called stable if for any neighborhood
U of M there is a neighborhood V of M such that F77i?+ c U. A
stable subset ilf of X is called

(i) asymptotically stable if for any neighborhood U oί M and
any a e l , there is a TeR such that ^77[Γ, oo) c U,

(ii) locally uniformly asymptotically stable if for any xeX — M,
there is a neighborhood V of x such that for any neighborhood U of
ilί there exists TeR such that F77[Γ, oo) c U.

(iii) uniformly asymptotically stable if there is a neighborhood
U of M such that for any neighborhood F c U of If there exists
TeR such that E777[Γ, oo) c V.
A continuous function L: R-> R+ is called a Liapunov function for
a subset Jlf of X if

(i) Ir(aO = 0 if and only if x eM,
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(ii) L(xΠt) < L(x) for every x e X - M and 0 < ί,
(iii) for any neighborhood U of M there is an ε > 0 such that

ε < L(x) whenever xiU,
(iv) for any ε > 0 there is a neighborhood V of M such that

L(x) < ε whenever x eV.

In [2] it is shown that a compact subset M of a metric space is
asymptotically stable if and only if there is a Liapunov function
for M.

Throughout this paper X will denote a separable metric space
with metric d and we will assume that d(x, y) S 1 for every x, y e X.
For x e X and ε > 0 the set {y e X: d(x, y) ^ ε} will be denoted by
B(x, ε).

The set of all sequences z = {zlf z2, , "zΛf •} of real numbers
such that Σm=iZm converges is denoted by l2. A norm can be defined
on l? by \\z\\ — (ΣS=i «i») - The origin in l2 will Be denoted by 0. Let p
denote the dynamical system on l2 defined by zpt == c% where c e (0, 1).

Let p be a uniformly asymptotically stable critical point of a
dynamical system Π on a separable metric space X. Let U be a
neighborhood of p such that for any neighborhood 7 c ?7 of p there
is a Γ > 0 so that UΠ[T, °oj c F.

LEMMA 1. C(α) Π (X - U) Φ 0 /or ever?/ x e l - {p}.

Proof, Let a ;Gl-{p} . Since C(α?)Π?7=0, we may assume
that "a? 6 ?7. Let V be a positively invariant neighborhood of p such
that x£ V and F c Ϊ7. Then \xΠ(-oof 0 ] ) n 7 = 0 . Let T > 0 be
such that D77[T, «) c V. If C(α) Π (X - U) = 0 , then vΠ(-oot T) =
(xΠ{— ©of 0])/ZΓ c V which is impossible since (xΠ(—oo, 0 ] ) f lF= 0 .
It follows that C(a):n (X - Z7) ̂  0 for every a e l - {p}.

It is known that there is a Liapunov function L for the uniformly
aymptotically stable critical point p} [2]. Let λ be a number in the
range of L such that L~\X) c U and set S = ϊ/ΓXλ). It is easy to
verify that S is a section for Π restricted to X — {p}. , Since X is
separable there is a countable dense subset {xn} of S. Define a count-
able number of continuous functions fn:S-^Rn by

fn{x) =ί d(a?, a? J

where d is a metric on X such that d(x, y). g> 1 for all #, ?/ 6;X

LEMMA 2. 1/ /„(#) ̂  fn(y) for every n, then x = ?/..
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Proof. Suppose that x Φ y. Set r = d(x, y) and B — {z: d(z, y) <*
r/4}. Since {xn} is dense in S there is a & such that xkeB. Then
/*(#) — d(i/, xk) ^ r/4 <; 3d(#, xk)ji < /*(»). A similar argument shows
that there is a j such that /y(αj) < f3 (y). The desired result follows
directly.

LEMMA 3. The mapping h: S —> Z2 defined by

n

is a homeomorphism of S onto h(S). Moreover, \\h(x)\\2 ^ Π2/6 for
every x eS.

Proof. Let xeS and ε > 0. For any yeB(x,ε), we have
d(x, xJ — ε <̂  d(2/, α?n) <; d(as, a?Λ) + ε. Hence, for every n we have
\fn{x) — /»(i/)| ^ ε whenever y eB(x, ε). This shows that {/J is uni-
formly equicontinuous. It is now easy to show that h is continuous.
By Lemma 2 the mapping h is one-to-one. Suppose there is a sequence
{Zi} in S such that h(Zi) —> Λ(«) for some zeS. Then /Λ0δ<) -> /n(j?) for
every n, i.e., d(^, xn)-+d(z, xn) for every w.; Let d > 0 and choose
j so that ci(«, Xj) < <5/4. Since d(^, xό) -> cί(«f, a?y) we have dfo, ̂ ) ^
d(^, Xj) + cί(ί3, aj5 ) < S for all i sufficiently large. It follows that
Zi —> z so that h~x is continuous. Thus, ft is a homeomorphism of S
onto A(S). Since d(u, v) ^ 1 for every u, veX, we have UMaOlϋ ^
2 ~ = 1 m~2 = ZP/6 for every cc e S.

LEMMA 4. If x, y eS are such that h(x) = h(y)pt for some teR,
then x — y and t — 0.

Proof Suppose that Λ,(#) = h(y)pt = cίfc(̂ /) for some ί e i2. With-
out loss of generality we may assume that t >̂ 0. Then /Λ(a?) =
o*/Λ(i/) ^ Λ(i/) for every M. By Lemma 2, x = /̂. If α? = y, clearly
t = 0.

LEMMA 5. T%β mapping H: X > L defined by

H(x) - ^ ^ if x = p ,
\h(xΠr(x))p(-T(x)) ifxeX- {p} ,

where T: X — {p} --> i? is α continuous mapping defined by xΠT(x) e S,
is a homeomorphism.

Proof If xφp, then clearly H(x) ^ 0 = H(p). If £Γ(a?) = Jϊ(2/)
with xφp-φy, then h(xΠT(x))p(-T(x)) = h(yΠT(y))p(-T(y)) so that
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h{xΠY{x)) = h(yΠY(y))p(Y(x) - T(y)). By Lemma 4 we have
h(xΠT(x)) = h(yΠY(y)) and T(x) = T(y). Since h is one-to-one
xΠY{x) = yΠT(y). Hence, # = y and Jffis one-to-one. Since h, Π, Y9

and p are continuous, i ϊ is continuous on X — {p}. We will now
show that H is continuous at p. Let {zj be any sequence in X — {p}
which converges to p. Since p is stable there is a neighborhood W
of p such that WΠR+ c L-'flΌ, λ/2]). Hence, r(xt) ^ 0 for all i suf-
ficiently large. It suffices to consider two cases: Y(zt) —> — co and
Y(z%)->ί ^ 0. If r ( ^ ) - > - o o , thenffW->0since || fcOM7r(s<))|| ̂  /72/6
for each i and || flfo) || - \\h{ziΠY{zd)p{-Y{zM = c-r^\\h{zίΠY{zM--^^
If rfo) -> t then 0 ^ λ = Lfotfr ,(*,)) -> L(pi7ί) = L(p) = 0 which is
impossible. Thus, H is continuous. A short calculation shows that
H-1(H(x))=h-1[H(x)pT(x)]Π(-r(x)) whenever xΦp. Since hr\ H, p,
Γ, and Π are continuous, H~x is continuous on iϊ(X) — {0}. Let {τ/J
be any sequence in X — {p} such that H(yt) —> 0. Since ffCyJ =
c-r{ Vi)h{yiΠY{yτ)) we must have either r(yt)-*- <*> or h{yjir(yd) -> 6.
If h{yiΠY(yi)) —> 0, then diyJlYiy^, xn) —> 0 for every w, which is
impossible. Hence Y(y%)-> — °°. Recall that S = L~J(λ)c ί7, where Z7
is a neighborhood of p such that for any neighborhood V c 17 of p
there is a Γ so that UΠ[T, «>) c F. Then ^ = {yiΠY{y%))Π{-Y{yι)) e
UΠ[—Y(yi), oo). From our choice of ί7 and the fact that Y(y^ -> — ̂ y

we have y< —> p. The continuity of ϋf-1 follows directly, if is a
homeomorphism of X onto H(X).

THEOREM 5. Let Π be a dynamical system on a separable metric
space X which has a globally assymptotically stable critical point p.
Let c e (0, 1) and p be the dynamical system on l2 defined by xpt = c*x.
Then Π can be embedded into p if and only if p is uniformly
asymptotically stable.

Proof. Suppose that Π can be embedded into p. Evidently the
origin is uniformly asymptotically stable with respect to p. Since
Π is embedded into p, it is easy to show that p is uniformly asymp-
totically stable. Now suppose that p is uniformly asymptotically
stable. In light of Lemma 4 it remains to show that H{xΠt) = H(x)pt.
It is easy to show that Y{xΠt) = Y{x) — t. Hence,

H(xΠt) = h((xΠt)ΠY(xΠt))p(-Y(xΠt))

= h(xΠY(x))p(-Y(x) + t)

= (h(xΠY(x))p(-Y(x)))pt

= H(x)pt

for every x Φ p and teR. Clearly H(pΠt) = H(p) =O~Oρt for every
teR.
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COROLLARY 6. ([1]) Let Π be a dynamical system on a locally
compact space X. If Π has a globally asymptotically stable critical
point, then Π can be embedded into p.

LEMMA 7. Let A be a compact subset of l2 with 0 g A. Then
(ApR) U {0} is locally compact in the relative topology.

Proof. Since A is a compact with 0 £ A, for any N, e > 0 there
are tl9 t2eR such that \\Apt\\ > Nfor t < t, and \\Apt\\ < ε for ί2 < t.
It easily follows that ApR is locally compact since ApB is compact
whenever B is a compact subset of R. Next we will show that
(ApR+) U {0} is a compact neighborhood of 0 in ApR. Clearly ApR+

is a neighborhood of 0 in (ApR) U {0}. Let {xt} and {ίj be any
sequences in A and R+ respectively. Without loss of generality we
may assume that there is an x e A such that xt —> x. If {£,} has an
accumulation point t, then xpt is an accumulation point of {xtpti}. If
£t —> °° > then aji/oίi 6 Aptt —> 6. It follows that any sequence in
(A/θβ+) U {0} has an accumulation. Hence, (ApR+) U {0} is compact.
The desired result follows immediately.

THEOREM 8. Let Π be a dynamical system on a separable metric
space X which has a globally asymptotically stable critical point p.
Let c G (0, 1) and p be the dynamical system on l2 defined by xpt = &x.
If Π can be embedded into p, then there exists a locally compact
subset Y of U such that Π can be embedded into p restricted to Y.

Proof. Let the notation be as before. Evidently h(S) is a subset
of the Hubert cube, T = [x e l2: x = (xl9 x2, , xn, •) with \xn\ <̂  n~ι

for each n}, which is a compact subset of l2. Since S = L~\X), the
section S is a closed subset of X with p$S. Hence 0 g h(S). Since
h(S) is a closed subset of T, it is compact. Set Y = (h(S)ρR) U {0}.
By Lemma 7, Y is a locally compact subset of Z2. Clearly H(X) a Y.
The desired result follows directly.
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