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ARITHMETIC SUMS THAT DETERMINE LINEAR
CHARACTERS ON I'(N)

RANDY TULER

A new class of arithmetic sums is defined and used to
explicitly exhibit linear characters on I'(N), the principal con-
gruence subgroup of level N in SL(2, Z). As an application of
this, we get a striking result on the structure of the com-
mutator subgroup of I'(N).

1. Introduction. Let a,8, NeZ with N>1,(a, 8) =1, and
a —1=p8=0mod N). For any function y: Z/NZ— R define the
arithmetic sum

:2:;1 x([ﬂq(mod N)> . 8>0
ty,(c, B)Z =0(mod ) B
’ » B=0

""tN,Z(a, MB) ’ B <0
where [ ] denotes the integer part.
ExamMpLE 1. With N =2, ¥(0) =1, and X(1) = —1 we have

ta,(1, 2) = 2([1/2]) = X(0) = 1; 2,,4(5, 8) = X([5/8]) + X(15/8]) + X([25/8]) +
X([35/8]) = X(0) + X(1) + X(3) + X(4) =1 -1 —-1+1=0.

The principal congruence subgroup of level N in SL(2, Z) is

I(N) = {AeSL(, Z)| A = I(mod N)} .

After preliminary work in §2 we prove

THEOREM 1. If > ,czxzX(g)=0, then the map I'(N)— C defined by

<5 % (it
g a> —— exp(ity (@, B))

1s a linear character on I'(N).

See [1] for the relation of this result to modular forms, knot
theory, and recent work of J. B. Wagoner on diffeomorphisms of
manifolds.

In §4, as an application of Theorem 1, we get a new result on
the structure of the commutator subgroup of I'(N).

2. Preliminaries. We develop an analytic expression for ¢, ,(a, B)
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that is instrumental in the proof of Theorem 1. Let p, q, »c R?
and let (p, q) and [(p, q¢) + r denote the directed line segment from
p to ¢ and its translation by 7 respectively. Denote the oriented
parallelogram in R* with sides [((0, 1), (0, 0)), »), I((0, 0), p), 1((0, 0),
0, 1)) + », and [(p,(0, 0)) + (0, 1) by <Z(p). Define the function
on Z/NZ by

1, g # 0(mod N)
90 =10, 4= 0(mod N) .

LemmA 1. Let {(my, n,)} be the points of Z @ Z contained in the
convexr hull of Z (B, a)). Then

;"/f(mk)x(nk — 1) =tya, |B]).

Proof. For 8> 0, the set of points of Z@P Z in the interior of
the convex hull of 2 ((B, a)) is precisely

{(k, [’;—“] + 1)10 <k < g}

since (@, B8) = 1. The four points of ZP Z on FZ((B, a)) have m, =0
(mod N). Consequently,

N i_l X([k_ab = ty(a, B) .

1
k#0(modN) ’8

The cases 8 =0 and B8 < 0 are handled similarly.
For the rest of the paper, we assume >,.zxzX(g) = 0.

LemMA 2. There is an elliptic function f (see [2]) with the
Jollowing properties:

(1) The period lattice of f is NZ @ NZ.

(2) The pole set of f is S = {(m, n) e ZP Z|m *= 0(mod N)}.

(38) If r=(m,n)eS, then the residue of f at r is X(n — 1).

Proof. The pole set S is well-defined modulo the period lattice
NZ@® NZ. The set of assigned residues is well-defined modulo
NZ @ NZ since X is defined on Z/NZ. Furthermore, the sum of the
assigned residues over a fundamental region of NZ @ NZ vanishes
because 3,czwvzX(9) = 0. Under these conditions we may apply the
Riemann-Roch theorem to assert the existence of f.
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LeMMA 3. The integral S [ is well-defined.
»a))

2B

Proof. No point of S is on ZZ((B, a)).

ProrosiTION 1. 27ity (e, B) = S .
A ((B,a)

Proof. Follows immediately from the preceding theree lemmas
and the residue theorem.

3. Proof of Theorem 1. For A el'(N), let (B, a))A denote
the parallelogram in R’ obtained by applying the linear transformation
A pointwise to FZ((B, a)).

LeMMaA 4. If A ['(N), then

[ = 7
B(B,a)) A R ({B,00))

Proof. A fixes the lattice Zg Z modulo NZH NZ. Consequently,
the sum of the residues of f inside Z((g, a))A is precisely the sum
of the residues inside “#Z((B, @)). Observing that A preserves orien-
tation and applying the residue theorem finishes the proof.

LemMa 5. If A = (56 Z)eF(N), then

2ity A, B) = S

-2 ((0,1) 4)

Proof. (0, DA = (8, a), so (0, )A) = (B, ). Apply Pro-
position 1.

Proof of Theorem 1. By Lemma 5, it suffices to show

T P S
£ ((0,1) 4) P ((0,1) B) &7 ((0,1) B4)

for A, Be'(N). By Lemma 4,

Sﬁ’((o,l)A) Sﬁ((O,I)B) S-Q((O,l)xi) S-ﬁ((O,I)B)A

Breaking up the path of integration into directed line segments, we
write the right hand side of the last expression as
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31),5 (0, »0), (0, >0, {0, » S ) 5 {0, ’
SI((O 1}, (0,0)) S!((O 0),(0,1) 4 S!((O 0),{0,1)+ (0,104 1((0,1) 4,(0,0))+(0,1)
+ > » (0, S »0), (0,1 »0),5(0,1 21
S!((O])A (0,0)) - J1((0,0), (0,1) BA} S[((O 0),(0,1) 4)+(0,1) B4

SI((O,l) BA4,(0,00)+(0,1)4

Since A and B fix (0, 1) modulo NZ@ NZ and f has period lattice
NZ @ NZ, we have the following relations:

(1) | S F=0
1((0,0),(0,1) 4)+(0,1) BA 1((0,1)4,(0,0))+(0,1)
1((0,0),(0,1))+(0,1) 4 1((0,0),(0,1))+(0,1) BA
(3) S S =0
1((0,0),(0,1) 4) 1{(0,1) 4,(0,0))
(4) S = |
1((0,1) B4, (0,0))+{0,1) 4 1({0,1) BA4,{0,0))+(0,1)

Applying (1), (2), (8), and (4) to the preceding sum of eight integrals
gives

SI((O,I%(0,0)) Sl((o,o),(o,nBA)

SI((0,0) ,(0,1))+(0,1) BA S!((O,l)BA,(0,0))'F(O;l)

To finish the proof of Theorem 1, we recognize this last sum as

S:f((O,I)BA)

ExampLE 2. Let N=2, X(0) =1, and X(1) = —1. We have

10\ /138 138, /13 8 . _
(2 1>,< 3 5> eI'(2) and ( >< 3 5) = <34 21). Since D czpz X(g) =
0, Theorem 1 asserts that ¢,,(21, 34) =t¢,,(1, 2) + ¢, (5, 8). From

Example 1, ¢,,(1,2) =1 and ¢,,(5,8) = 0. Therefore %,,(21, 34) =
1+ 0 =1. Checking this directly gives

t, (21, 84) = §3 X([zlk:D

kiO(m0d2) 34
= A(0) + X(1) + X(3) + X(4) + X(5) + X(6) + X(8)

+ X(9) + X(L0) + X(11) + X(12) + A(14) + A(15)

+ X(16) + XAT) + X(A9) + x(20) =1 -1 —-1+1—1
+141—-1+1-14141—-141—-1—-1+1=1.
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4. A structural theorem for the commutator subgroup of
I'(N). Let I'(N) denote the commutator subgroup of I'(N).

THEOREM 2. Suppose <2, Z)eF(N)’ with B8 > 0. Then for any

meZ there are precisely 1/N(B — B/N) elements of the set C =
{[ka/B1}ez: . that satisfy [ka/B] = m(mod N).
kE#0(mo )

Proof. For a fixed m = 0(mod N), define

1, ¢g = 0(mod N)
AUg) = {—1, g = m(@mod N)
0, otherwise .

Using Theorem 1 along with the observation that the image of I'(N)’
under a linear character is trivial, we deduce that the number of
elements of C that satisfy [ka/g] = m(mod N) is the same as the
number of elements of C that satisfy [ka/B] = 0(mod N). Since this
holds for any m = O(mod N), and since there are precisely g8 — B/N
elements in C, we get the theorem.

COROLLARY. If <,16’ g) e '(N), then 8 = 0.
Proof. If g > 0, then every element of C vanishes. By Theorem
10 ' . 1 0\

i,( ZS; §’ 1) ¢ '(N). If g <0, use the preceding argument on ( 3 1) €
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