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Let X, X;, and X; be independent random variables and
let Z,= X, + X;and Z, = X,+ X;. It is known that if the char-
acteristic functions of X, 2 =1, 2, 3, do not vanish then the
distribution of (Z,, Z,) determines the distributions of X,
X,, and X, up to a shift. The aim of this paper is to prove
a result of a similar nature using sums of a random number
of random variables. We shall use ~ for “has the same dis-
tribution as,” r.v. for “random variable, ” ch.f. for “char-
acteristic function,” and p. g f. for “probability generating
function.”

THEOREM 1. Let N, X, X,, -+-, Y, Y,, - -+ be independent r.v.’s
where X, ~ X, Y, ~Y,n=12, ---, and X and Y are nondegenerate
real-valued r.v.’s having ch.f.’s @ and +, respectively, which are of
bounded variation on every finite interval. Let N be a nonnegative
integer-valued r.v. with p.g.f.

Qe) =p+ Xps”, [s|S1, p,=PN=n)

and 0 < EN =m < . Assume that there is a mneighborhood of 1
relative to the unit disk such that Q' exists in this meighborhood.
Denote

U=0for N=0, U=X,+ X, +--- + Xy for N>0, and
V=0jfor N=0, V=Y, +Y,+- -+ Yy for N>O.

Then the distribution of (U, V') uniquely determines the distribution
of N.

Proof. Since N, X, X, ---, Y, Y,, --- are independent r.v.’s,
the eh.f. of (U, V), ®u.», satisfies the following:

Py, t) = E(eV )
Pl E(eirl,r~:—itr'|N = O) . P(N ey 0) + ﬁ E(eirl,‘-;,ur;N — ’)’l,) . P(N _ n)

— E(l) . po + i E’(eir(,\'ﬁ_...,(»Xn)+1§t(Y1+...+),n)) . p”

n=1

= P + g [E(e) - E(e*)]" - p,

=P+ 3 [20) - ¥OF - pa
= Q(@(T> * "f'f(t» s r, teR.
71
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Suppose there are other r.v.’s N* X} X¥, .--, Y}, Y5, ---,
satisfying the assumptions. By repeating the above procedure
denoting U* and V* similarly we obtain

(1) Pnyn(r, 1) = Q@ (r) - 4*(@®), 7, teR.

Since (U*, V*) has the same distribution as (U, V), their ch.f.’s are
identical; thus,

(2) Q¥ (P*(r) - ¥*(#) = QP(r)-y(@), 7, teR.

Relation (2) is a functional equation and from this equation it will
be shown that @* = Q.

The function @ is analytic inside the disk, thus the image of a
domain under @ is a domain. There is a neighborhood of 1 relative
to the unit disk such that @** exists and is analytic in this neigh-
borhood. Thus there exists a neighborhood A of 1 relative to the
unit disk such that Q** exists and is analytic in Q(A). Define

(3) g(s) = @*(Q(s)) scA.

Note that ¢ is analytic in A and maps A into the unit disk. It can
be assumed without loss of generality that 0¢ A.
Using relations (2) and (3),

(4) aqP(r) - (@) = P*()-¥*@X) 7, teR, p(r)-Y(t)e .

By alternately allowing » =0 and ¢ = 0 it is found that q(e()) =
@*(r) and q(4(t)) = *(t). Substituting these into relation (4)

(5)  gl@r)-v@) = o@)-qy®) 7, teR, pr)-y(t)cA.

Since 0¢ A, there exist continuous functions @, and 4, such that
@(r) = e and () = e and @,(0) = 4(0) = 0 where @(r) - ¥ (t) € A.
Since @ and + are of bounded variation on finite intervals, @, and
+r, are of bounded variation on finite intervals. Define

(6) 2(0d) =Ing(") e'cd,

where we take the branch for which In1l =0. Then from relation

(6)

Qo(@o(7) + Po(2)) = In g(e?o" Vo ®)
= In q(@(r) - ¥(2))
(7) = In [g(@(1)) - g(v())]
= In q(@(r)) + In q(y(t))
= In ¢(e**™) + In g(e¥*™®)
= @(Po(1)) + @(yo(®) ,  Pr)-p(t)e A .
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Consider the following integrals obtained by using equation (7)

|} @ + witnavi® = | fatou@) + an@)ldvg

(8)
= (@@ #(8) + || GOt
and
[ 9u@ur) + dn(8Nder) = | [a@ur)) + aiin(@Ndr)
(9)

= [apr)dp ) + ao(e) - i)

where a and g are fixed real numbers such that @(r)-+(t)c A for
0<r=<a and 0<%t =p3. These integrals exist because @, and
are of bounded variation on finite intervals and ¢, is analytic. Using
a change of variables on relations (8) and (9), the following integrals
are obtained.

L) = 0,(@i(@)) - ¥o(8) + § ? g .

oola)+9ro(B) Yol
(10) S
0

ola)

(11)

S@o(a)ﬂ’m(

" awido = ar i) - pie) + | awian .

By adding equations (10) and (11) right sides to left sides the
following equation is obtained,

Sgo{a)hﬂ(ﬂ) QO<?))dU + QO(’WO(B)) ’ (PO(a)

Spo(a)—)—w,’ro(ﬂ)

0

(12)

2(v)dv + qo(Po(@)) - ¥o(B) .

0

From this it is seen that

13) QD("/fo(B)) - Py(@) = qo(Poa)) - "#0(3) .

Since X and Y are nondegenerate, |@(r)| < 1 and [4(t)| < 1 almost
everywhere. Thus @ (@) and +(8) are different from zero almost
everywhere and

(14) 2((B)) _ 9(P(@))
¥o(B) Po(a)

Since the choice of « is independent of 3
(15) 2(Po(@)) = cp () where ¢ is a complex number .

Since q,(b) = In q(e®), q(s) = s° for se A.
Since ¢ is complex, ¢ = @ + ©b where a, be B. Thus Q*(Q(s)) =
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s for se A since ¢(s) = Q*(Q(s)). Since A is a relative neighbor-
hood of 1, there is a segment of the real line [6, 1]C A where 0 <
60 < 1. The function @ maps the unit disk into the unit disk, and
Q** maps Q(A) into the unit disk. For s€[d, 1], s°=e* " =gon*+i0Ine =
et e Since [s°| £ 1, alns <0 for se[d, 1]. Thus a = 0 since
Ins £ 0. The function Q(s) is real for s a real number and Q**(Q(s))
is real for Q(s) a real number. Thus for s[4, 1], s° is a real number
and bIns = Omod (27). Thus b =0 and ¢ =a = 0.

Since @*~Y(Q(s)) = s° for se 4, then Q(s) = Q*(s°) for s€ A. The
functions @, Q*, s° are analytic for 0 <|s| <1, thus Q(s) = @*(s*) for
0<}s|<1. Suppose ¢=0. Then Q(s)=Q*(1)=1 for 0<|s|<1. This
implies that EN = 0 which is a contradiction. Thus ¢ # 0. Since
the expectation of N and N* exist lim,, Q'(s) = lim,_, ¢s*7'Q*'(s®) or
m = c¢m. Thus ¢ =1 and Q(s) = @*(s) for all |s| = 1. ]

REMARK. A characterization for the distribution of N has been
found using the assumptions of Theorem 1. The following shows that
the assumption “that there is a neighborhood of 1 relative to the
unit disk such that @' exists in this neighborhood” is redundant.

THEOREM 2. Let N be a monnegative imteger-valued r.v. with
p.g.f.

Q(s)=po+§;ms", sl=1, p.=PN=mn).

If 0 < EN < + oo, then Q 1s one-to-one in a relative neighborhood
of 1.

Proof. Let D ={s:|s] <1,seC} and Q(s) = u(s) + iv(s) where
% and v are real-valued functions.
Let

G (@, Uy, By Ys) = <ux(x1, Yy, (s, y1)>

Voo Ya)y Vy(@oy )
where , + iy, %, + 1y, are in D. The function @ is analytic in D
if and only if # and v are differentiable in D and satisfy the

Cauchy-Riemann equations.
Let

w(, ¥)
v(x, ¥)

Thus f(x, y) is differentiable in D, f' may be represented by the
Jacobian matrix of f,

f(w,y)=< ) x+iyeC.
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(2, Y), U, Y)

x+iwyeC,
v.(%, ¥), v,(2, y)>

S, y) = <
and f'(x, ¥) has continuous existension to D.
The mapping det [G(x,, ¥, 2., ¥.)}: R* — R is continuous on D X
Dc R But

det [G(xu Y1y Loy yz)] = uz(xly y1) : vu(xzy ya) - uy(xly yl) : vx(xm ?/2) .

Since det [G(, 0, 1, 0)] = |Q'(1)|* # 0, there exists a convex neighbor-
hood of 1 such that det[G(x, ¥, 2., ¥.] # 0 is this convex (closed)
neighborhood. Without loss of generality, we assume det [G(z, ¥,
@, ¥,)] # 0 for all x, + 4y, «, + iy, € D.

Let cjc? € D. By the Mean Value Theorem for vector-valued
functions

£e) = fd) = G, e — d)
where Ej = (1 — tj)_é + tﬁ, j=1,2, for some ¢;€(0,1). Note that
c;eD, §=1,2.
Since det G[(z,, ¥, 2., ¥,)] # 0, the matrix G(x,, ¥,, 2., ¥,) represents

a one-to-one linear map. Thus, if ¢ # aT, then f(g) - f(&). Thus, Q@
is one-to-one in a relative neighborhood of 1. ]

Note that in Theorem 1 nothing is said about the distributions
of X and Y. The following example will show that more assump-
tions are needed in order to determine the distributions of X and
Y.

ExAMPLE 1. Let N and N* be distributed according to the
p.g.f. Q) =3s% |s| 1. Let X be distributed according to the
characteristic function @(r) =1 —2{r|/x for |»| =z and o(r) is
periodic with period 2z, and let X* ~ |@(#)]. Let Y ~ Y* ~ 4(t)
where +(f) is any nonvanishing real-valued ch.f. (U, V) ~ (U*, V*)
since

QU™ (1) - v*(#) = Qp(r) - ¥(t), r,teR although @*(r) = @(r).

Thus more conditions must be imposed in order to prove
Theorem 3.

THEOREM 8. Lef N, X, X,, ---, Y, Y,, -+ be r.v.s satisfying
the assumptions of Theorem 1, and U and V be defined as in
Theorem 1. Then the distribution of (U, V) uniquely determines
the distributions of X and Y if one of the following conditions
holds:
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(i) The characteristic functions @ and v are analytic at zero.
(i) There is a relative meighborhood B of 1 such that o(r)-
w(t)eB, r,te R, and Q ts one-to-one on B.

Proof. From the proof of Theorem 1 @* =@ and
(1) QP*(r) - p*(®)) = Qp(r) - ¥(®)) 7, teR.
Thus by alternately letting » =0 and ¢t =0
(2) Q@*() = Q@(r) and Q*({) = Q) » teR.

If condition (ii) is assumed, then it is clear that ¢* = @ and * = 4.
If conition (i) is assumed, then as before, @ has a local inverse
at one and @*(r) = @(r) and ¥*(t) = 4(t) for », ¢ in some neighbor-
hood of zero. But since the functions are analytic ch.f.’s, ¢* = @
and 4* = 4.
Thus the distributions of X and Y are determined uniquely.

The following theorem has a proof very similar to that of
Theorem 1.

THEOREM 4. Let N, X, X,, --+, Y., Y, --- be independent r.v.’s
with X, ~X, Y, ~Y, n=12,---, where X and Y are symmetric
real-valued nondegenerate r.v.’s having ch.f.’s @ and +, respectively,
with 0 () =1 and 04 (t) =1, r,teR. Let N be a nonnega-
tive integer-valued r.v. with p.g.f.

Q<S)=p0+n§1‘pn3%3 ‘slélf pn:P(N:n)
where 0 < EN = m < oo,
Denote U and V as in Theorem 1.

Then the distribution of (U, V) uniquely determines the
distributions of X, Y, and N.

Proof. The proof of this theorem is the same as the proof of
Theorem 1 up to relation (2). At this point the fact that ¢ and
are nonnegative real-valued functions can be used to simplify the
proof. Since EN >0 and EN* > 0, Q and Q* are strictly increasing
on the interval [0, 1]. Thus the inverse of @ and @* exist as funec-
tions from [p, 1] and [p¥, 1], respectively, onto [0, 1]. Without loss
of generality »f < »,. By letting

(1) q(s) = @*'(Q(s))  sel0,1]
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and using relation (2) in Theorem 1

(2) q@(@(r) - p(t) = @*(r) - ¥*(t) r,teR.

Note that ¢ is continuous since @* and @ are continuous. Taking
alternately » = 0 and ¢ = 0 and substituting in equation (2) gives

(3) q(p(r) - ¥(8)) = q(Pp(r)) - q(¥(¥)) 7, teR.

Denote A = {a:a = @(r),re R} and B = {b:b = (), t € B}. Since X
and Y are nondegenerate, @ and + are not identically equal to 1.
Since @ and + are real-valued, continuous, and @(0) = +(0) = 1, there
is an interval [¢, 1], 0 < ¢ < 1, suech that [¢, 1] AN B. Thus

(4) q(ab) = q(a)- q®)  for a,b, abelc,1].

From [1], q(s) = s* for sel¢, 1] and % some real number. Using the
same argument as in Theorem 1, £ =1 and Q*(s) = Q(s), |s| < 1.
Thus the distribution of N is uniquely determined.

Using relation (1), q(s) = s, and relation (2) yields @*(r) = ¢(r),
re R, and 4*(t) = 4(t), t€ R. Thus the distributions of X and Y
are uniquely determined.

REMARKS. In each of the theorems we have assumed 0 < EN =
m < +o. This assumption can be replaced by the assumption,
“There exists a fixed smallest positive index j, such that p; > 0.”
The theorems can be generalized if X and Y are random variables
taking values in a locally compact Abelian group or taking values
in a locally convex topological vector space if appropriate assump-
tions are made.
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