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STEPHEN MCADAM

Let I be an ideal in a commutative Noetherian domain R,
and let [ be the integral closure of /. It is known that the
sequences of sets of primes Ass(R/[*) and Ass (R/f") both
eventually become constants, those constants denoted A*(J)
and /i*([) respectively. The main result of this paper is that
if 7 is an integral extension of a local domain (R, M), and if
I is an ideal of R such that 7/IT contains a height 0 maxi-
mal ideal, then MEA*(I). This fact is then used to study
when A*(P) = {P} for P a prime of R. (This is a variation of
the question when does P*» = P™ for all large #?) It is shown
that if A*(P) = {P}, then “going down to P” holds. Finally,
the main argument is used to produce an example of an #-
dimensional local domain, (R, M) such that for any P<Spec R
—{0}, and any m>=2, M&Ass (R/P™). Also the analytic spread
of any such P is n.

Background. The question concerning the asymptotic behavior
of Ass(R/I") and Ass(R/I*) was posed in [12] which essentially
showed the existence of A*(I) (also see {9, Proposition 7]). The
existence of A*(I) was proved in [1].

Notation. Throughout, R will be a Noetherian domain with
integral closure R’. If I is an ideal of R, I will be the integral
closure of I. If R is local, »(I) will be the minimal number of
generators of I and I(J) will be the analytic spread of I. Finally,
“c” will denote proper containment.

THE MAIN ARGUMENT.

THEOREM 1.1. Let I be an ideal in a local domain (R, M). Let
T be an integral extension domain of R and assume that T/IT con-
tains a height 0 maximal ideal. Then there is an integer n =1
with the following property:. If J is any ideal of R satisfying
IS J S M (any m = 1), then Me Ass (R/J).

Proof. We first reduce to the case that 7T is a finite R-module
contained in R’. By a simple going up argument, 7”/IT' contains 3
height 0 maximal ideal. Since R’ S T satisfies going down, R'/IR’
has a height 0 maximal, say N'/IR’. Choose we N’ but % in no
other maximal ideal of R’. Let N = N'NR[u]. Then N’ is the
only prime of R’ lying over N. We now easily see that N/IR[u] is
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a height 0 maximal of R[u]/IR[«#]. Thus we may assume that
T = R[u] is a finite R-module contained in R’.

We have a maximal ideal N of T with N minimal over IT. Let
(V, P) be a D.V.R. overring of T with PN T = N. Choose beR
with T € R, and select » sufficiently large that b¢ P*. Since N
is minimal over I™T, for some s€ T — N and integer k¥ = 1, we have
sNECI™T. Thus bsM*CbsN*CI"(bT)<SI"R=1I". We also claim that
bs ¢ M*, since if bse M* & N* & P* = P», since s is a unit of V we
have beP®, a contradiction. Now if I < J < M* then clearly
bsM* < J and bse R — J, showing that M* consists of zero divisors
modudo J. Thus Me Ass (R/J).

REMARK. Our choice of » actually only depended on b and P
(that is, on b and N). In particular this » will work for any ideal
I such that N is minimal over IT.

COROLLARY 1.2. Let I be an ideal in a local domain (R, M).
If there exists an integral extension domain T of R such that T/IT
contains a height 0 maximal ideal, then Me A*(J) for any ideal J
of R satisfying I = Rad (J).

Proof. With » as in Theorem 1.1, clearly for all m =» we have
I"< » < M. Thus Me Ass(R/I"), so that Me A*(I). Since IC
Rad (J), clearly T/JT contains a height 0 maximal and so similarly
we get Me /I*(J).

The converse of Corollary 1.2 if false. That is, there is a local
domain (R, M) containing an ideal I, such that Me A*(J ) for any
ideal J whose radical contains I, but such that R is integrally closed
and dim R/I > 0 (so that no T is in Corollary 1.2 exists, using going
down). For this, suppose that (R, M) is a 2-dimensional integrally
closed local domain, and that I = P is a height 1 prime ideal with
the property that P is not the radical of any principal ideal. Let
PZ Rad (J). If P=Rad(J), then J is not principal and so by [9,
Proposition 21] and [7, Theorem 6] we have Me€ A*(J) = AxJ). If
instead P == Rad (J), then clearly M = Rad (J) and Me A*(J). As
dim R/P =1 and R is integrally closed, the converse of Corollary 1.2
fails. There are domains (R, M) with a prime P as just described.
A. Sathaye has shown that K[X, Y, Z]/(ZY?® — X® — Z?®) is such a
domain, and [4] constructs a 2-dimensional integrally closed local
domain in which no height 1 prime is the radical of a principal
ideal.

Ratliff has proved the following lovely pair of theorems. Here
R* denotes the completion of the local domain R.
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THEOREM A ([13, Theorem 9]). The following are equivalent for
a local domain (R, M).

(1) R* contains a depth 1 yrime divisor of 0.

(2) There is an integer n =1 such that for any ideal I = M",
Me Ass (R/I).

THEOREM B ([14, Theorem 1]). The following are equivalent for
a local domain (R, M).

(1) R* contains a depth 1 minimal prime.

(2) R’ contains a height 1 maximal prime.

(38) There is an integer n = 1 such that for any ideal I = M*,
Me Ass (R/D).

(Note: In Theorem B, Ratliff actually only assumes Rad R = 0.)

The equivalence of (1) and (2) in Theorem B follows from an
earlier theorem of Ratliff [11, Proposition 3.5]. Ratliff’s proof of
Theorem B argues that (1) is equivalent to (8). We will now give
a more elementary proof that (2) is equivalent to (3). (Note: Con-
dition (iii) below is new.)

PROPOSITION 1.3 ([14, Theorem 1]). Let (R, M) be a local domain
with integral closure R’ and completion R*. The following are
equivalent.

(i) R* contains a depth 1 minimal prime.

(ii) R’ contains a height 1 maximal prime.

(iii) There is an n =1 such that for any ideal I < M*, Me
Ass (R/I).

(iv) There is an n =1 such that for any ideal I < M", Me
Ass (B/D).

(v) For any ideal I of R, there is an n = 1 with M e Ass (R/I*).

(vi) Me Ass(R/@) for some a € R.

Proof. (i)« (ii): By [11, Proposition 3.5]:

(ii) = (iii): Let N’ be a height 1 maximal of R’. If we N’ but
u is not in any other maximal prime of R’, then let T = R[u] and
N=N'NnT, so that height N=1. For any ideal I of R, N is
minimal over IT. By the remark following the proof of Theorem
1.1, we see that (iii) is satisfied by the » constructed in Theorem 1.1.

(iii) = (iv): If I S M" then [ < M".

(iv) = (v): Straightforward.

(v)=(vi): Straightforward.

(vi) = (ii): Since 1;1\? =aR'NER, M can be lifted to a prime
divisor of aR’ in R'. This prime will have height 1.
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REMARK. Theorem A together with [13, Remark 12.1] show
that in conditions (iv), (v), and (vi) above we must use the integral
closures of the ideals.

Going down and fi*(P). A question which has received some
attention is when does P" = P™ for P a prime ideal. For this to
hold for all large n is obviously equivalent to A*(P) = {P}. We pose
the question, when does A*(P) = {P}? (Since A* appears to be better
behaved than A*, as evidenced by [7, Theorem 3] for example, our
version of the question might be more tractable than the other
version.) In this section, we will show that A*(P) = {P} implies a
pleasant going down property. We will then show that that going
down property often fails.

DEFINITION. Let PCQ be primes in a domain B. We will say
that PC Q satisfies going down if for any integral extension domain
T of R and any prime q of T with ¢ N R = @, there is a prime p
of T with pcq and pN R = P.

ProPOSITION 2.1. Let PC Q be primes in a Noetherian domain
R. If PCQ does not satisfy going down, then there is a prime Q,
ofR with PC Q, S Q, PC Q, does not satisfy going down, and Q, €
A*(P).

Proof. Let T be an integral extension domain of R and let ¢
be prime in T with ¢ R = Q such that there is no prime p of with
pcq and pNR = P. Choose ¢, prime in T with PT S q, < ¢ and g,
minimal over PT. Let @, = ¢,NR. Clearly Pc@Q, fails going down.
Letting S= R — Q, and considering RsC T, since (q,)s is minAimaI over
P.Ts, by Corollary 1.2 we have (Q)s€ A*(Ps). Thus Q, e A*(P).

poROLLARY 2.2. Let P be prime in a Noetherian domain R.
If A*(P) = {P}, then PCQ satisfies going down for any prime Q
containing P.

Proof. Immediate.

REMARK. The converse of Corollary 2.2 fails. Let (R, M) be a
2-dimensional integrally closed local domain, and let P be a non-
principal height 1 prime of R. Since R is integrally closed, Pc M
satisfies going down. However, by [9, Proposition 21] and [7,
Theorem 6], Me A*(P)sz*(P). (Notice that such an (R, M) is
Macaulay, and hence satisfies the altitude formula.)
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COROLLARY 2.3. Let PCQ be primes in a Noetherian domain
R with height (Q/P) = 2. If PCQ fails to satisfy going down, then
for all but finitely many primes p with P cpC Q, we have Q€ A*(p).
For those p with Q¢ A*(p) we have pe A*(P).

Proof. Suppose PCpCQ, p prime. If peff"‘(P) then Proposi-
tion 2.1 easily shows that P C p satisfies going down. Since PC @
fails going down, obviously » € @ must fail going down. Now by
Proposition 2.1, we see that Qe/i*(p) for all pefi*(P). As A*(P)
is finite, we are done.

It is not difficult to produce situations in which Pc @ fails to
satisfy going down, as is illustrated by [5, Theorem 2] or [6]. As
an example of how the arguments in [5] or [6] can be combined
with the present arguments, we present the following.

PRrOPOSITION 2.4. Let R be a Noetherian domain with integral
closure R'. Let Q@ be a prime of R with height @ = 2. Suppose
that in R', more than one prime lies over Q. Then there are
infinitely many primes P of R satisfying PC @, height (Q/P) =1
and Qe A*(P).

Proof. A simple variation of the proof of [5, Theorem 2] shows
that there are infinitely many primes PcC @ with Pc @ failing to
satisfy going down. If infinitely many such P also satisfy height
(@/P) =1 then for each of these we have Qe/f*(P) by Proposition
2.1, and we are done. Otherwise for some P C @ which fails going
down, wehave height (@/P)>1. We claim that such P can be found
with height (@/P) = 2. Since infinitely many primes p satisfy PcC
pC @ and height (Q/p) = height (Q/P) — 1, we may pick such a p
not in A*(P). By Proposition 2.1, (since height (p/P) = 1) we have
P C p satisfies going down. Thus p < @ must fail going down. Our
claim now follows by induction. We now have Pc@Q, heigh
(Q/P) =2 and Pc< @ fails going down. The result follows from
Corollary 2.3.

We close this section with an observation concerning local
domains which satisfy the altitude formula. Recall that I(I) is the
analytic spread of the ideal I.

PROPOSITION 2.5. Let (R, M) be a local domain which satisfies
the altitude formula. Let P be a prime ideal of R. Consider the
statements (a) U(P) = height P; (b) ﬁ*(P) ={P}. Then (a) implies
(b) but mot conversely.

Proof. Suppose that P+ Qe A*(P). By [7, Theorem 3], I(P,) =
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height @ > height P. However it is not difficult to see that I(P) =
I(P;). Thus (a) fails. Therefore (a) implies (b).

To see that (b) does not imply (a), we consider a 3-dimensional
integrally closed local domain (B, M), satisfying the altitude formula
and having R/M infinite, with a height 1 prime P whose minimal
number of generators v(P) =2, but such that v(Py) =1 for all
height 2 primes Q. We first see that (b) holds. Since v(P,) =1,
clearly I(P,) = 1 < height @ = 2. By [7, Theorem 3], Q¢ A*(P) for
any height 2 prime Q. Also I(P) £ v(P) = 2 < height M = 3. Thus
Mg A*(P). Therefore A*(P)= {P} and (b) holds. To show (a) fails, we
need I(P)+ height P=1. If I(P)=1 then (since R/M is infinite) there

is a principal reduction, ¢R, of P. Thus cR__C_P;c/I}. As R is

integrally closed, ¢cR = c/I\B, contradicting «(P) = 2.

It remains to be seen that such an (R, M) and P exists. P.
Eakin provided the following example. With K an infinite field and
X, Y, Z, W indeterminates, let R = K[X, Y, Z, Wlx.r.zm/(XY —
ZW)x.v.z,m- This is integrally closed using [15, Theorem 1]. Let
P be the image of (X, Z). Since X = Z(W/Y) and Z = X(Y/W)
and sinee any height 2 prime @ containing P fails to contain one
of W or ¥, v(P)=1. Since (XY —~ZW)c(X, 7Y, Z, W)}, the
maximal ideal of R requires 4 generators. Thus P must not be
principal, so v(P) = 2.

REMARK. We now have that if P is prime in a local domain
satisfying the altitude formula, then (i) = (ii) = (iii) and none of the
reverse, with

(i) UP) = height P

(i) A%(P) = (P}

(iii) PcQ satisfies going down for any prime @ containing P.

We mention that the proof in (i) == (iii) is not difficult. Thus
the significance of the above is that (ii) lies properly between (i)
and (iii).

AN ExampPLE. Let (R, M) be a local domain with completion
R*. In [13, 10.2] Ratliff asks if the following two conditions are
equivalent.

(I) R* contains a depth 1 prime divisor of 0.

(II) For PeSpecR — {0, M}, P+ P" for all large n. That
is, A*(P) # {P}.

((I) = (II) is immediate from Theorem A.) The following example
shows that (II) does not imply (I), as well as having other interest-
ing characteristics.
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ExaMPLE. Let n = 2 be an integer. By [3, Theorem A] it is
possible to construct a Noetherian domain 7 with exactly two
maximal ideals N, and N, with height N, = height N, = n, such
that there is a field F and indeterminates X,, ---, X, ¢ = 1, 2 with
Ty, = F[X,, -, Xl xp- Thus T/N,~F, i =1,2. Also, for
each 0% QeSpecT, @ is in exactly one of N, or N,. Now let
be a field isomorphism from 7T/N, onto T/N, and let R = {te
T|®t + N,) =t + N,}. By [2, Theorem A], R is a local domain with
maximal ideal M = N, N N,. Since MT < R, T is a finite R-module
in the quotient field of R, and for each PecSpec R — {M}, there is
a unique prime of T lying over P.

(a): R is analytically unramified. By [10, §36], T, is analyti-
cally unramified 4 =1, 2. Thus 7T is analytically unramified and
since 7T is a finite R-module, R is analytically unramified.

(b): R satisfies the altitude formula. For this, Ratliff has shown
that it is equivalent to see that R[X].,x is catenary [8, Corollary
2.5]. However this follows easily from the fact that T[X].  1is
n + 1-dimensional and catenary, 7 = 1, 2.

(¢): In the completion , R*, each prime divisor of 0 is minimal
and has depth n. Since R is analytically unramified, Rad R* = 0
and so each prime divisor of 0 is minimal. Since R satisfies the
altitude formula, R is quasi-unmixed so that each minimal prime in
R* has depth » [11, Theorem 3.1].

(d): For PeSpecR — {0, M}, M€ A*(P) < A*(P). Let Q be the
unique prime of T lying over P. Without loss, we may assume
Q@ C N, so that @ £ N,. We claim that N, is minimal over PT. If
PT < qC N, with ¢ prime in 7, let p =¢N R. Since P< p, by
going up, @ can be enlarged to a prime lying over p. However q
is the unique prime of 7T lying over ». Thus @ £ ¢ N,. This
contradiction proves our claim that N, is minimal over PT. By
Corollary 1.2, M e A*(P).

(e): For 0= PeSpec R, I(P)=mn. This follows from (b), (d)
and [7, Theorem 3].

(f): If PeSpec R — {0, M} we in fact have M e Ass(R/P™) for
all m = 2. Pick b,e N,— (N?UN,) and b,e N,— (N7UN,). Then b=
bb,e(N,N N, —(N2UN3). As was argued in (d), we have (say) N,
minimal over PT. Thus for some s€T — N, and integer k=1,
sNf € P"T. Therefore sbM" < sbNf =< P™(bT) < PR = P™ (since
beN,NN,=M and MT < R). Now sbe R — P™ since if she P" C
M™ < M* < N;, then since s€ T — N, we would have be N?, a con-
tradiction. As sbM* < P™ and sbe R — P™, M* consists of zero
divisors modulo P™ so that M e Ass (R/P™) for any m = 2.

REMARK. In fact (II) = (I) in Ratliff’s question, even if R is
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integrally closed. [4] constructs a 2-dimensional integrally closed
local domain (R, M) in which each height 1 prime is nonprincipal.
By [9, Proposition 21] R satisfies (II). Also 2-dimensional integrally
closed implies R is Macaulay so that (I) is known to fail.
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