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THE LEVI DECOMPOSITION OF A SPLIT (B, N)-PAIR

N. B. TINBERG

Let p be a prime number. If G is a finite group with a
split (B, N)-pair of characteristic p then each parabolic sub-
group G, of G can be written as a semidirect product of cer-
tain subgroups C; and L,. Moreover G, is the full normalizer
of C; in G.

1. Introduction. Let G be a Chevalley group. The set of
its parabolic subgroups {G,;|J & R} is indexed by the subsets of the
set R of fundamental roots of the associated Lie algebra. Each G,
admits a decomposition of the following form:

GJ = JLJ

where C, <0G, and C; N L, = {1}. Furthermore, G, is the normalizer
of C; in G. This decomposition of G, into the semidirect product
of C, and L; is called the Levi decomposition and L, and its conjugates
in C, are called the Levi subgroups of G, (see [2, p. 118-119]). In
this paper we show that if G is a finite group with a split (B, N)-
pair of characteristic p then the parabolic subgroups of G admit a
similar decomposition.

The difficulty in proving the existence of the Levi decomposition
for an arbitrary finite group with a split (B, N)-pair is showing that
C,<dG; (Lemma 1) and that L; is itself a group with a split (B, N)-
pair (Lemma A). Curtis proves these facts in [5, Proposition 1.5(a),
(d), p. 669] and concludes that G admits a Levi decomposition.
However, his arguments depend on the use of the commutator
relations ([5, Proposition 1.4(f), p. 669]) and the proof of these
relations relies heavily on the Fong-Seitz classification ([6], [7]) of
split (B, N)-pairs of rank?2, It is the advantage of this present
note to prove the required facts without these commutator relations,
but under the assumption

(*) UnU*<U for all w,cR.

The reader should note that (*) appears as a hypothesis in [7,
Theorem D, p. 238]. Moreover, in the case when p is an odd prime
(*) follows using a very strong result on 2-transitive permutation
groups due to Kantor and Seitz ([8, Theorem C’, p. 131]. See [10,
proof of Theorem 4.5].). That result is essential to the Fong-Seitz
classification (see [6, p. 2]). By assuming (*) we too then employ
the Kantor-Seitz result; however, since we do not refer to the Fong-
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Seitz papers, we have achieved a substantial simplification of the
existing proof.

Throughout our discussion G = (G, B, N, R, U) will denote a finite
group with a split (B, N)-pair of characteristic » and rank n (see
[4, Definition 2.1, p. B-8]). Hence G satisfies the following conditions:

(i) G has a (B, N)-pair ([4, Definition 2.1, p. B-8]) where H =
BN N and the Weyl group W = N/H is generated by the set of
involutions R = {w,, ---, w,}.

(ii) H = Nyexy n'Bn.

(iii) U is a normal p-subgroup of B; B =U-H is a semidirect
product and H is abelian with order prime to p.

Notice that (iii) tells us that we always have a Levi decomposition
in the case J =0, G. = B.

The author wishes to thank J. A. Green for his helpful sugges-
tions.

2. Preliminaries. The Weyl group of a (B, N)-pair is isomorphic
to the Weyl group of a root system in Euclidean space in such a
way that R corresponds to the set of fundamental reflections (see
[9, p. 439]). We therefore define 4 = {a;,|w,€ R} to be the set of
fundamental roots of this root system.

Let v: N — W be the natural epimorphism. For each subset JER,
the parabolic subgroup G;=(G,, B, N,;, J, U) is an unsaturated split
(B, N)-pair of characteristic p and rank |J| where W, = (w;|w;eJ)
and N, = v%(W,) (see [1, Proposition 1, p. 28]). The group G, =
BN,B is unsaturated (see [10]) since [),.y, # 'Bn may be larger than
H; that is, M.y, U" > 1. Any we W can be written as a minimal
product of the generators in B. We denote by I(w) the length of
such an expression. For each J < R, w, will denote the unique
element of maximal length in W,. In the case J = R we write w,
for w,. If X is any subset of G and ge G, then X = ¢g~'Xpy.

DEFINITIONS. Letwe W. Then ,U-=UnU"", ,U+rNU". Write
waU™ as U, and ,_ U as Uj. In the case w = w, we write U, for
wU". Let V,=Up: and V=U". Set G,= (U, V,) and H, = HNG,.

Let (w;) € N be such that (w))H = w,(w;€ R). As in [3, Lemma
2.2, p. 351] we choose

(a) (w,)eG,; for each w,eR.
In which case

(b) G, =UH,UUH,(w,)U,

for all w,e R ([3, Lemma 2.7, p. 351]).
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DEFINITIONS. For each JSR let L, = (H, (U)*|\we W,, w,eJ).
Set UJ:wJU_, BJ:HUJ.
Notice that L, = (H, (G,)"|we W,, w,€J) and that

(C) LJ = <H: Gllw’b GJ>

by our choice of representatives (a).

LemMA A. If G is a finite group with o split (B, N)-pair then
(L;, B,, N;, J, U,) is a split (B, N)-pair for any J S R.

Curtis proved Lemma A using the commutator relations ([5,
Proposition 1.4(f), Proposition 1.5(d), p. 669]). The following proof
was suggested to the author by J. A. Green. We first require:

LEMMA B. Let we W,. Then , U S U,. In particular U, U,
Jor all w,eJ.

Proof. Write w; = vw with I(v) + l(w) = l(w;). By [10, Lemma
2.2], U, = ,U(,U)” and the result follows.

Proof of Lemma A. We verify the (B, N)-pair axioms as given,
for example in [4, p. B-8]:

(i) L;=(B;, N;) and B,N N, < N,.

Let w; = w, --- w, be a reduced expression for w, with all
w,€J (1 =s=gq). Then

UJ = (Uzq)(Uz
by [4, Proposition 3.3(vi), p. B-13]. Hence U, < L, and B, <& L,

since H S L;. By (a) and (¢) L; contains each (w,) where w,eJ so
that N, & L,. Hence (B;, N,> € L;. Conversely, if w,cJ then
U,cU, <{(B,;, N;y by Lemma B and Hw € N; S (B,, N,y all we W,.
Therefore (U,)* S {B;, N;> all we W, and L, S (B;, N;>. We also
have that HES B, N N; S BN N = H and (i) is proved.

(ii) The finite group W, = N,/(N; N B;) = N,/H is generated by
the set J of involutions.

(iii) For all w,eJ and we W, there holds w,B,w S B,wB; U
B,wwB;. To prove (iii) we need only show that

(1) (w)u(w) € BywB; U B;w,wB;

)Wiq . (Uil)wi2...wiq

g—1

for any we U,. By [4, Proposition 3.3(iii), p. B-13] we may write
u = u,u, with w, e U,, u,e U;. By Lemma B, u,e¢U,. So u,cU,
and w,cU;NU, =U0nU""'NnUNU* and (w)u,(w)e U*NUN
Ui C w,wlU- S U, by Lemma B. Therefore
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(wu(w) = (wHu(w)(w) " 'u,(w) € (wu,(w)B; .

It is therefore sufficient to prove (1) for any u(=u)e U). We
examine the following two cases:

Case I. l{w,w) = Il(w) + 1. By [4, Proposition 3.3(i), p. B-13]
and Lemma B

(U < U (U =Us,, SU; .

W =

If we U, then

(w)u(w)B; = (wu(w,) " (w.)(w)B; S U,w.wB; .
Hence if
(2) H{ww) = l(w) +1 then (w)ulw)e B,wwB;

for any we U,.

Case II. l(w,w) = l(w)—1. Writing » = w,w we then have w =
w,w with {(v) +1 = l(w) and as above

U, =Us, =, U (U)" = (U)"U, .

Therefore (U,)*: = (U, )(U,)* S U,U,)* by Lemma B. If we U, we
have (w,)u(w) = (w,)u(w,)*(w,;)(w) € B;gvB, for some g €G,. From (b)
either g lies in U;H; € B, in which case (w,)u(w,) € Byw,wB; or g lies
in UH,w)H, < Bw,B, in which ecase (w,)u(w)e B,w,B,vB; &
B,wwB; = B,wB; using (2) (with v replacing w). Thus (1) holds in
Case II.

(iv) For all w,ed, w,B,w;, + B;. Now U, S B, so that w,B,w, 2
(Up»s. If (iv) were false then w. B,w,= B, 2 (U,)": so that (U,)* S U
contrary to [4, Proposition 3.3(v), p. B-13].

The (B, N)-pair is saturated since

U NU; =0UnU* U NUSUNV ={1}.

3. Proof of the Theorem. We now state our theorem and prove
it by a succession of lemmas. Assume (*) holds:

THEOREM (Lewvi Decomposition). Let G = (G, B, N, R, U) be a
finite group with a split (B, N)-pair of characteristic p. For each
subset J & R, there exist subgroups C; and L; such that

(a) G; = C;L; where C; <IG; and C;N L, = {1}.

(b) The normalizer in G of C; is G.
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Fix JCR. Let C; = Nuex,U". Then C, =UNU" and Cy = C,
for all we W, by [10, Lemma 2.1 and the subsequent remark]. It
can easily be shown that C, is generated by certain root subgroups
of G as in [5, p. 669] or [2, p. 119]. In the special case J = R we
know that C = C, =U N U* = {1} since G is saturated.

Lemma 1. C,<G,.

Proof. The result follows by [10, Lemmas 4.2 and 4.3].
LEMMA 2. Let L; = {(H,G;|w;eJ). Then G, = {(C,, L,).

Proof. Notice that (C;, L;,) = {C,, B,, N;> by (i) in the proof
of Lemma A so that {C,, L,> = (C,;, U;, N;> = (B, N,> by [4, Pro-
position 8.3(ii), p. B-13] and the result follows.

Since C, < Gy,

LEMMA 3. GJ = CJLJ-
Lemma 4. UNL;, CU,.

Proof. By Lemma A, we have a Bruhat Decomposition

LJ = U BJwBJ .
we WJ
If w=1, we W, then B,wB, does not intersect B since B,wB;< BwB
and BwB N B is empty. Hence BN L; S B; and Lemma 4 follows.

LEMMA 5. CJ ﬂ LJ = {1}.

Proof. C,NL,=C,NnUNL, =C,NU,; = {1} by [4, Proposition
3.3(iii), p. B-13].

The proof of the following lemma is based on [2, p. 120].
LEMMA 6. The normalizer, N (C,), of C; in G is G,.

Proof. We know that G, & N (C,) so that N, (C,) = G with
JS K. If JCK take w,e K, w,¢J. Then by [4, Proposition 3.3(v),
p. B-13}], U, < ,U* for any we W, since w(a;,) >0 all we W,. But
C; = Nuew, »wU* so that U, & C;. Since w; Gy, Uyi S Cyi = C,. On
the other hand U¥i CU by [4, Proposition 3.3(v), p. B-13] since
w,;(a;) = —a,. Therefore, Upi S C,NVZSCNV ={1} and U, = {1},
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contrary to the (B, N)-pair axioms since for all w,e R, w,Uw, #U
and U =U,, U" (see [4, Proposition 3.3(iii), p. B-13]).
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