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It is shown that a quasi-pure-projective torsion free abeli-
an group of finite rank is either strongly indecomposable or
a direct sum of isomorphic rank one groups.

The purpose of this note is to record the author’s theorem that
quasi-pure-projective (qpp) torsion free abelian groups of finite rank
are either strongly indecomposable or homogeneous completely de-
composable.

This result has been in the folklore for several years. It is
cited in [1], Theorem E (a classification theorem for finite rank qpp
groups) and in [3], (a characterization of locally free quasi-pure-in-
jective groups).

Throughout, “group” will mean torsion free abelian group of
finite rank. Otherwise the terminology and notations are from [2].

DEFINITION 1. A group A is a quasi-pure-projective if for any
pure subgroup K of A and homomorphism 4: A — A/K, there is an
endomorphism 6§ of A such that 74 = 6, where II: A— A/K is the
natural factor map.

For the proof of our result it is convenient to consider what
seems to be a generalization of the qpp property. (Actually, in [3]
it is shown that the property defined below is equivalent to gpp in
the finite rank case).

DEFINITION 2. A group A is almost quasi-pure-projective (aqpp)
if there exists a fixed integer % such that for any pure subgroup
K of A and homomorphism 6: A — A/K, there is an endomorphism 4
of A such that 7§ = nf, where II: A— A/K is the natural factor
map.

The integer n will be called the associated integer for the agpp

group A.
A sequence of lemmas leads to the result. The proof of the

first one is routine.
LEMMA 1. A direct summand of an agpp group is aqpp.

The proof of the next lemma is given in [3], §5. The proof
can also be obtained by slight modification of Lemma 4.1 of [1].
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LEMMA 2. Let A be a strongly indecomposable aqpp group and
B be a proper pure subgroup of A. Then A and A/B are divisible
by the same primes.

Let (g, 9., - -, 9.y« denote the pure subgroup generated by the
elements g,, g, - -+, 9,- (The group in which the pure subgroup is to
be taken will be obvious in each instance where the notation is
used.)

The next lemma is the key to the theorem.

LeMMA 3. Let A and B be strongly indecomposable reduced
groups such that A @ B is aqpp. Then given 0 ~xc€ A and 0*y¢€
B, there is a homomorphism f: B— {x), such that f(y) = 0.

Proof. Let p be a prime such that pB # B, and write n = p*l,
with (p,I) = 1, where » is the associated integer for A& B. Now
let {y =y, ¥, -+, ¥} be a maximal rationally independent set in B
and let B, = {¢.|q%. + -+ + ¢¥.€B, ¢;€Q, 1 < j <s}. Since B, =
B/{y,, -+, Y%, Lemmas 1 and 2 imply that pB, = B,. Let ¢ be
the largest integer such that 1/p'e B,. Form H = {(p"+*'x — y,,
Yoo Ysy =+, Ysrx and consider the map 0: AP B— (AP B)/H given by
6(a D b) = B,/p*+**'(y, + H) where ac A and b = >3, B,4;€ B. Note
that ¢ is defined since y, + H = p"**"*(x + H). Since A @ B is aqpp,
there is a lifting 6: A@ B— A @ B such that 76 = nf, where II:
AP B— (AP B)/H is the natural projection. Then p'*t'4(y,) has
the form p*'6(y,) = np'+'/(p*+*)y, + h = ly, + h where he H.

Let TI. be projection of A B onto A. If [[.0(y,) = 0, then in
the above equation, h € B. But then 1/pt'(ly, + h) € B, contradicting
the choice of t. Thus 0 = 1, d(y,) € [1. 0(B) < {x),.

The final lemma is the motivation for considering agpp groups.
The proof is routine.

LemMMA 4. If A is quasi-isomorphic to B(A~ B) and A is aqpp,
then B is aqpp.

Our theorem now follows easily, using Lemmas 1 — 4.
THEOREM. Let A be an aqpp group. Then A is either strongly
indecomposable or is a direct sum of isomorphic groups of rank

one.

Proof. If A is not strongly indecomposable, write A~A,H---P
A,, r =2, where each A, is nonzero and strongly indecomposable
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(2], §92). Given 0= yecAd,, 0+ xe A, apply Lemmas 3 and 4 to
obtain f: A4, — (x), with f(y) # 0 and (by symmetry) g: 4, — {y),
with g(x) = 0. We conclude that type () = type (¥) and {x),={¥).
(21, p. 109 (D) and Th. 85.1).

But if f: A, — (), with f(y) +# 0 and type (x) = type (y), then
it immediately follows that (y), is a quasi-summand of 4,. To see
this let K = Ker f and note that <{y), N K = (0). Since A,/K is
isomorphic to a subgroup of {x), we have: type {y).=type ((¥).P
K)/K < type A,/K < type {x), = type {(¥),. Thus, there exists an
integer m such that m(A,/K)S((y). @ K)/K. This gives 4,~<{y).P
K. Hence A, = {y),. Similarly, all of the A, must be of rank one,
and having the same type, are isomorphic. Thus A4 is quasi-isomor-
phic to a direct sum of isomorphic groups of rank one. This implies
that A4 is actually isomorphic to this sum by [2], Prop. 98.1.
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