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Spectral analysis properties of L7(R), where H is a separ-
able Hilbert space, are investigated. It is proved that spectral
analysis holds for LZ(R) if and only if H is finite-dimensional.
The one-sided analogue of Wiener’s theorem for some sub-
groups of the Euclidean motion group, is obtained.

1. Introduction. Let A be a Banach space and F a class of
bounded linear transformations of A into itself. Following [2] we
say that spectral analysis holds for A if every proper closed subspace
of A, invariant under F, is included in a closed maximal invariant
subspace of A.

The case where A is the Banach space of sequences summable
with weights and F is the class of the translation operators was
studied in [2].

We are going to study the problem of spectral analysis with A
being the Banach space L7(R) of functions defined on R, taking
values in a separable Hilbert space H, and F' is the class of transla-
tions by the group R.

Wiener’s classical theorem states that spectral analysis holds
for L{(R) where H is one-dimensional.

Our main goal is to show that spectral analysis holds for L{(R),
if and only if, H is finite-dimensional.

In §2 we characterize the minimal w*-closed, translation in-
variant subspaces of LZ(R), the dual space of L7 (R).

Spectral analysis in the finite-dimensional case is considered in
§3. In §4 we construct a w*-closed invariant subspace of LZ(R)
which does not contain a nontrivial, minimal, w*-closed, invariant
subspace. One-sided spectral analysis in subgroups of the motion
group, is studied in §5.

For x e H let ||z|] = (x, #)V* denote the norm of . For fe L. (R),
let Sp (f) denote the spectrum of f.

2. Minimal invariant subspaces. The minimal invariant w®*-
closed subspace of LZ(R) are characterized as follows:

THEOREM 1. Let H be a separable Hilbert space with the basis
{e.}nmi.  Then the function feLI(R), f+ 0 generates a minimal,
w*-closed, invariant subspace, if and only if
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(f(x), e’n) = ane“z (n = 1’ 2: ot ")

for some e R and {a,}5-, €1l,.

Proof. Let f,(x) = (f(x), e,) for n=1,2, ---,.

If f.(x) = a,e* then, obviously, the invariant subspace generated
by f is one-dimensional.

To prove the “only if” part, let M denote the w*-closed, in-
variant subspace generated by f, feLZ(R). Suppose that \ €
Sp (f)s N €Sp (f.) where m #= k and N, < \,. Let ¢e L,(R) be such
that Supp ¢ = [r, 7,] where », <\, < 7, < \,. Let ge LZ(R) be the
function g(x) = S fle—a)p(a)da. Let ke L,(R) with Supp kC(r,, =),
such that g fm(x)h(x)dx # 0. Then, for 4 € L¥(R), where (4+(2), e,) =

h(x) and (q,k(x), e, = 0 for » #* m, we have

| (oo — @), v@)ds = |”_gule — wh@ds =0

—o0 —oco

for all @ € R, where ¢,.(x) = (¢g.(%), ¢,). On the other hand, we have
S (f(x), yr(z))dex —S fa@)h(x)dx = 0 which implies that M is not
minimal and the result follows.

3. The finite-dimensional case. Spectral analysis holds for
LZ(R), where H is finite-dimensional. By duality, this result is a
consequence of the following:

THEOREM 2. Let H be finite-dimensional Hilbert space. Then
every w*-closed, invariant, nontrivial subspace of LZ(R) contains
an one-dimensional invariant subspace.

Proof. Let fe LZ(R) and f,(x)=(f(x), e,) (n=1,2, ---, N) where
{e.}V_, is a basis of H. We may assume that f, = 0 and 0 Sp (f,). Let
M denote the w*-closed, invariant subspace of LZ(R) generated by f.
Let ¢, € L,(R) where Supp ¢, = [—1/k, 1/k] $,(0) %0 for k=1,2, ---,
Hence, g,(x) = S flx — a)g,(a)da is not identically zero and belongs
to M(k=1,2, ---,). Let g,.() = (g4, ¢, for k=1,2, ..., and n =
1,2...,N.

There exist an integer 7, 1 < 7 < N, and a subsequence &k, — o
such that

max Hgkl,nHLoo = Hgklyj'HLcn .
1SmEN

If 93,” is multiplied by an appropriate function, it will follow that
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195,illze =1 and g,,,(0) > 1~ 701_ .

1
By Bernstein’s inequality [5, p. 149] we have

1

3 1=12 -.-,).
kl ( r = )

95,5z, =

Hence,

(304@) — 1] £ 2(la| + 1) which
i
implies that {g,,;}iz, converges uniformly on compact sets to the
constant function 1.

By the w*-compactness of the unit ball in L_(R) there exists a
subsequence of k;, which will be denoted again by k%, such that

Gunl®) — (@) m=12 - N

where +, € L (R) and ,;(x) = 1.
Obviously, Sp (4,) < {0} and by an elementary theorem on spectral
synthesis (see, for instance, [1] or [4] pp. 151 and 181) we deduce

’Iﬁn(m):cn cneC (?’[/:1,2,"',N).

Hence, the function € LZ(R), + # 0, where (4(x),e,) =c,
(n=1,2, .-, N) belongs to M which completes the proof of the
theorem.

REMARK 1. We have verified, actually, that the analogue of
Beurling’s theorem [1] in spectral analysis of bounded functions on
the real line, holds for LZ(R) where H is finite-dimensional.

REMARK 2. Theorem 2 may be, similarly, proved for LZ(R™)
where n > 1 and H is finite-dimensional.

4, The infinite-dimensional case. Spectral analysis does not
hold for LF(R) where H is infinite-dimensional. That is, there
exists a proper closed, translation invariant subspace of L{(R) which
is contained in no maximal, closed, invariant subspace of LI (R).
We prove the following:

THEOREM 3. Let H be a separable, infinite-dimentional Hilbert
space. There exists a montrivial, w*-closed, invariant subspace of
LE(R) which does mot contain any one-dimensional, invariant sub-
space.
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For the proof of Theorem 3 we will need the following lemma:

LEMMA 4. Let f, and f, be in L.(R) N L(R) suck that f, is a
constant d in the interval [a, b].

If ¢., eI, is a net in L,(R) such that
w*
(fexgo)(@) — ae®  (i=1,2)

where @ < N < b, then we have

a, FsN) = a.d .

Proof. We may assume that Supp ¢. < [a, b] for every cel.
E3

Hence f,*¢. = dp. for any relI. Suppose that d 0. Then ¢, ot
(a,/d)e'*® and

Fxge—— SF (e
If d = 0, then f*¢. = 0 for any €I and we have a, = 0. This

completes the proof of the lemma.
For h=0, ¢ > p let T,,,(x) be the function:

3h 2 1
€r— < = —
q_p( ) p=v< 2P+
2 1 1 2
h Lp+rg=<zr<=—p+Z
Ty, (@) = 4 gP Tgl=rsgP T3
3h (x—q) l1<>+—2—q§oc<q
»—q 3 3
0 elsewhere .

The proof of Theorem 3. Let X (x) = T, ..., (@) satisfy the
following conditions:

(1) h=1, p,=—1 and ¢, =2.

(ii) 0 — D= and h,=lgn (=23 ---,).
nlgn

(iii) For each », 0 < )\ < 1, there exists a sequence %, — o, such
that lim,_. X, (\) = oo.

Let g* be the sequence defined by
G (@) = X, (z) n=1,2 ).
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Let g, = g%+« where € L(R), ||4||;, =1 and Supp 4 [0, 1].
By condition (ii) we have ||g,]l.. < 2/n (n = 2,3, ---). Hence there
exists a function feLZ(R) such that (f(x),e,) = g.(x) for = =
1,2 -.-, where {e,}y_, is a basis of H.

Suppose that the w*-closed, invariant subspace generated by f
contains an one-dimensional invariant subspace. That is, there exist
a net ¢, terl, ¢, € L,(R) and a real number # such that

(1) (g5 8)@) —— a6t (n=1,2, )

where {a,}s-,€l,. For every g, we have Sp(g,) [0, 1]. Hence, we
may assume that pe (0, 1).

From (1) we have g} (4 *¢,) %» aet (m=12 ---,).

By (iii) there exists a sequence n,— oo such that lim, .., X, (#) = oo.
By Lemma 4 we deduce that a, =a X, () =12, ---,) which
implies that @, = 0 for each %n. This completes the proof of the
theorem.

5. Spectral analysis in subgroups of the motion group. In
[5] it was verified that the one-sided analogue of Wiener’s theorem
fails to hold for the motion group. However, we will prove that
the one-sided Wiener’s theorem holds for the subgroup My where

ot 2 or
MK_{(O l).ﬁ—f,]c—O,l,2,---,K—l,z€C .

(See also [3].)

By duality, this result is a consequence of the following:

THEOREM 4. FEvery w*-closed, right invariant, nontrivial sub-
space of L. (My) contains an irreducible (minimal) right invariant,
nontrivial subspace.

Proof. Let feV, f+ 0, where Vis a w*-closed, right invariant
subspace of L.(Mz). The subspace V contains all functions g such
that g(e*, 2) = f(e!*+™?, 2z — we'*®) where meZ and weC. For a
suitable 7 € Z the function

(2) Iilf(ei(k+m)0, z)e—irmo — eirkﬂ Kz_ll f(eimﬁ, z)e-—imﬂ — eirkop(z)
m=0 m=0

is nonzero and belongs to V. Let P,(z) = P(e*z) for s=0,1, ---,
K —1. Then by Theorem 2 and Remark 2 (P, are looked upon as the
coordinates of a function in LZ(R* where H is K-dimensional), there
exist 4, € L(R) (n=1,2,..:,), xeCanda,cC(s=0,1,---, K—1)
where >, |a,| > 0, such that
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(3) SRz P,(z — &)y, (8) _71*_) Qe

(Here, for 2,2,€C, (2, %,) = x,%,+y,Y, Where z, = 2,+1Y;, 2, = 2, +1%,.)
Let X, (&) = X5 v, (e7%) m=1,2, ---,. Obviously, X,(&) = X,(e™%)
for s=0,1, ..., K — 1. Then, by (3), we have

(4) [, Pe— ot@ds 5 S e
R? §=0
Hence, by (2), the function

oo\ Pz~ g1 (s = ¢ |, P& — St

belongs to V for each m». Finally, by (4), the function @ ¢ L. (M)
where Q(¢', 2) = ¢ 3K a, e’ ’»? belongs to V. Arguing as in
[5], it can be verified that the w*-closed, right invariant subspace
generated by @ irreducible. This completes the proof.
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