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DIMENSION MODULES

Victor P. CAMILLO AND JULIUS M. ZELMANOWITZ

M is called a dimension module if d(A+B)=d(A)+d(B)—
d(A N B) holds for all submodules A and B of M, where d(M)
denotes the Goldie (uniform) dimension of a module M. We
characterize these modules as the modules which have no sub-
modules of the form XMX/Y with Y an essential submodule
of X. As a test, the structure of a completely decomposable
injective dimension module is determined.

A sum A + B of submodules of a module M need not satisfy
the usual vector space dimension formula d(A + B) = d(4) + d(B) —
d(A N B), where d(M) denotes the Goldie dimension of M (that is,
d(M) is the number of components in a longest direct sum of sub-
modules contained in M, and is co if no such direect sum exists).
This was noted by the authors in [1], where the following substitute
formula was proved for arbitrary modules.

THEOREM (Dimension Formula I). Let A and B be submodules
of a module M. Let C= AN B and let 1, denote the identity map
on C. Let g be a maximal monic extension of 1, comsidered as a
partial homomorphism from A to B, and let D be the domain of g.
Then

d(A + B) = d(A) + d(B) — d(D) + d(D/C) .

In this paper, we study modules whose submodules satisfy the
usual vector space dimension formula itself; these we call dimen-
sion modules. This class turns out to be somewhat larger than we
had originally anticipated. It includes, for instance, all nonsingular
modules and all modules whose lattice of submodules is distributive.
These examples are obtained in §1 from a characterization of
dimension modules which arises, in turn, from a revision of the
dimension formula. In §2 we show that maximal essential dimen-
sion extensions of dimension modules exist. The article concludes
in §38 with a study of injective dimension modules and direct sums
of dimension modules. In an appendix, d(M) is compared with
the reduced rank po(M) of a module M over a right noetherian ring
(o does satisfy the classical dimension formula).

1. Dimension modules. We begin with some notation and
definitions. All symbols A4, B, M, N, X, Y, ... indicate modules over
an arbitrary ring R. A < B means that A is a submodule of B,
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and A <I B indicates that A is an essential submodule of B. A
partial homomorphism from A to B is a homomorphism from a
submodule of A to B. By a uniform module we means a module
of dimension equal to 1; alternatively, a uniform module is one in
which any two nonzero submodules have nonzero intersection. For
N a submodule of M, we let N denote a maximal essential exten-
sion of N in M. Although N is not necessarily unique, this will
cause no ambiguity in the sequel. When N = N, we say N is closed
in M.

Perhaps the simplest example of a module which is not a
dimension module is the abelian group M = Z,2 Z,. The subgroups
A=2Z;: and B = {(m, m)|0 < m < p°} = Z,» are both uniform, and
A+B=M ANB=pZ: But d(A+ B)=2 while d(4) + d(B) —
dANB)=1+1—-1=1. The surprising fact is that this example
is generie, as the next proposition reveals.

PrROPOSITION 1. A module M is a dimension wmodule if and
only if for every partial endomorvhism f: A— M with fANA =0,
kernel f is closed in A.

In the example M = Z: Z, above, the partial endomorphism
f: Zgz— M via f(a, 0) = (0, @) is the culprit that causes M to fail
to be a dimension module. The following rephrasal of the proposi-
tion puts the situation in a clearer perspective.

COROLLARY 2. M fails to be a dimension module precisely when
it has a submodule isomorphic to X P X/Y for some Y <J X.

Before proving Proposition 1 we state a revision of the dimen-
sion formula, which contains a more explicit error term, as com-
pared to the dimension formula for vector spaces. Our proof of
the revised formula utilizes the original version.

THEOREM. (Dimension Formula II.) Let A and B be sub-
modules of a module M. Let 1,,5 denote the identity map on AN
B considered as a partial homomorphism from A to B, and let
f: E— B be a maximal extension of 1,,5 such that AN B<IE < A.
Then

d(A + B) = d(A) + d(B) —d(ANB) + d(E/AN B) .
Proof. Such a pair f, E exists by a standard application of

Zorn’s lemma; and f must be a2 monomorphism because ANB < E.
Now choose a maximal monic extension ¢ of f considered as a
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partial homomorphism from A to B, and let D = E be the domain
of g. From the original dimension formula we have

(1) d(A+ B)=d(A) + d(B) — d(D) + d(D/A N B).

Next, Lemma 3 of [1] asserts that for any modules X < Y

(2) d(Y/X)=d(Y)— d(X) + d(X/X),
where X is any maximal essential extension of X in Y. In our
situation, £ is a maximal essential extension of AN B in D; else
we would violate the choice of E. Hence applying the preceding
formula we get

(8) dD/ANB)=4d(D)— d(AnB) + d(E/AN B).

Finally, putting (1) and (3) together yields

d(A + B)=d(A) +d(B) —d(ANB) + d(E/ANB).

Proof of Proposition 1. In view of the revised dimension for-
mula, M will be a dimension module if and only if for every A,
B<M, AN B is closed in the domain of any monic extension of
1,.5 regarded as a partial homomorphism from A to B.

Now suppose that M is a dimension module and let 1 A —- M
be a partial endomorphism of M with fAN A = 0. Setting g=1—
fiA—> M, we have AN gA = kernel f; so ¢g=1 on ANgA, and ¢
is monic because fAN A =0. g is therefore a maximal monic ex-
tension in A of 1,,,,: ANgA— gA. By hypothesis then, ANgA =
kernel f is closed in A.

Conversely, assume the stated condition holds, and let f be a
maximal monic extension in 4 of 1,,5 AN B— B with D = domain
f, A and B submodules of M. We must show that AN B is closed
in D. Set g=1—f:D—>M. Now gDND=0. (For if gd =d’
for some d,d’eD, then fd=d—d'€e ANB, so fd=1,,5(d— d) =
f(d —d). Then d =d — d' because f is monie, and so d' =0.) By
hypothesis kernel ¢ is closed in D, and we are done since kernel
g=ANB.

COROLLARY 3. For R a ring, every R-module is a dimension
module if and only if R is semisimple artinian.

Proof. It suffices to prove that no module has a proper essen-
tial submodule. So let B<1A and consider M = AP A/B. By
Corollary 2, M cannot be a dimension module unless B = A.

We remark that the above proof actually shows that if AQQA/B
is a dimension module for every B=<1A then A is a semisimple
module.

The rest of this section will be devoted to producing examples
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of dimension modules. Recall that an R-module is called nonsingular
if the annihilator of each nonzero element is not essential in R.

PROPOSITION 4. A nonsingular module is a dimension module.

Proof. We use Corollary 2. Suppose that M is nonsingular
and contains a submodule A @ A/B with B=] A. Then each element
of A/B has an essential annihilator in R. So A/B=0, and M is
therefore a dimension module.

PROPOSITION 5. An abelian group is a dimension group if and
only if it is one of the following types: torsion-free, or a torsion
group whose p-primary component for each prime p is isomorphic
to etther a subgroup of Z,-, or a direct sum of copies of Z,.

Proof. The question is, which abelian groups do not contain
subgroups of the form A A/B with B<1A? Now any mixed
group contains copies of Z and Z/nZ for some n > 1, and these
have zero intersection. Hence a dimension group must be either
torsion or torsion-free. Since the torsion-free groups are precisely
the nonsingular groups, we need only discover the torsion dimen-
sion groups.

So assume that A = @, 4, is a torsion group with p-primary
component A,. Since B =@,(BN A,) for any subgroup B of A we
may assume that A = A, is p-primary. Let A(p) be the subgroup
of elements of order p in A; A(p) is an essential subgroup of A,
if [A(p)| = p, then A is isomorphic to a subgroup of Z,, a uniform
group, and so is trivially a dimension group. If A(p) = A then A
is a dimension group since A(p) is a vector space over Z,. So we
are left with the possibility that |A(p)| > » but A(p) = A. Choose
any element a € A\A(»); a has order p* for some » > 1. Then Zan
A(p) has order p, so we may choose an element be A(p), b¢ Za.
Then Za N Zb = 0 and Zb = Za/p*'Za, so A fails to be a dimension
group by Corollary 2.

Our final source of examples is the class of distributive modules,
where a module is called distributive if for any trio of submodules
A B, CCANMB+C)=ANB)+ANC).

PROPOSITION 6. A distributive module is a dimension module.
Proof. Without loss of generality we may assume that we

have a distributive module of the form M = A A/B with B A,
and our task is to prove that then necessarily B = A. Set N = A/
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B @ A/B, which being a homomorphic image of M is also a distri-
butive module. On the other hand, define the following submodules
of N:L={x+ B, x + B)lxcA}, A, = A/IB0, A,=0 A/B. Then
L=LnA +A4)=LNA)+ (LNA)=0, and so B = A.

2. Maximal dimension modules. Our basic result here shows
that an ascending union of dimension modules is a dimension
module. Thus every module contains maximal dimension submodules.

PROPOSITION 7. Let M, be an ascending chain of dimension
modules. Then M = U M, is also a dimension module.

Proof. Let f:A— M be a partial endomorphism of M with
FAN A =0, and suppose kernel f <1 B for some submodule B of A;
we must show that then kernel f = B. For any be B, choose M,
so that b and fb are in M,. Then set A, = (kernel f N M,) + Rb =
M,. f;= fli is a partial endomorphism of M;, and kernel f; <] A4,.
So by hypothesis, kernel f;, = A,. It follows that fb = 0, and since
be B was arbitrary, kernel f = B.

We can now give a characterization of the essential extensions
of a given module which are dimension modules. For a module M
we let E(M) denote the injective hull of M, and we define . (M)=
(XSEM))ift Y X, feEndEM), fYNY =0 and fF(YNM) =0,
then fY = 0}.

THEOREM 8. (1) Me X(M).

(2) (M) has maximal elements.

(8) If M is a dimension module and Xe (M) then X is a
dimension module.

(4) If X<OEWM) and X¢ (M) then X is not a dimension
module.

Proof. (1) is trivial.

For (2), suppose X, < X, < ... is an ascending chain of ele-
ments of . Set X = UX, and let feEnd E(M), Y < X, with
fYNnY=0and f(YNM)=0. Let Y,=YnNX,. Then fY,NY,=
0 and f(Y,NM)=0, so f(Y;) =0 since X;€.&. But Y= UY, so
f(Y)=0.

Suppose that X e (M) is not a dimension module. Then there
is a submodule Z of X and a homomorphism f:Z— X with fZNZ=0
and kernel f not closed in Z. Without loss of generality we may
replace Z by kernel f in Z, and assume that kernel f <1Z. Now
fZN M is an essential submodule of fZ. So the restriction of
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i fZnNM)— fZN M is a nonzero map. It then follows that
FUSfZNM)YNn M)+ 0 because f(fZNM)< X and Xe S (M).
Setting ¢ equal to the restriction of f to N= ffZnM)N M,
we have that gN N N = 0 and kernelg <IN. So M is not a dimen-
sion module. This proves (3).

Now let X be as in (4). Since X¢ (M) we may choose f €
End E(M) and Y < X with fYNY =0, f(YNM) =0, but fY + 0.
Now consider f as a homomorphism: Y — fY, and let f, be the
restriction of f to X, = f-'(fY N M). fi#0 because fYNM=+0.
Now X,NM < YNM < kernel f, and X, N M < X,, so kernel f,<J X,.
Since f;X, N X, = 0 we learn that X is not a dimension module.

We now present an example to show that maximal essential
dimension extensions of a module need not be unique; that is, the
sum of two essential dimension extensions need not be a dimension
module.

ExaMPLE 9. Choose R to be a commutative local ring with
radical J, where J? = 0 and dimension J = 2. Then J = Socle R, so
we may write J = S, @ S, where each S, is a simple module. R is
itself a dimension module because each proper ideal of R is semi-
simple. Observe that for any z€J and re R, v« =0 if and only
if x =0 or reJ; and from this it is clear that S, and S, are iso-
morphic R-modules. We let /S, — S, and ¢:S,— S, denote a pair
of mutually inverse isomorphisms.

Set E = E(J) = E(S,) @ E(S,). Now consider the monomor-
phisms 14, i,: J — E defined by 4, = 1, i,(s, + 8,) = gs, + fs,(s; €S,), and
extend these to monomorphisms %, ¢,: R — E. Let xz=14@1), y=
2,(1). Then Rx = Ry = R are both dimension essential extensions
of Jin E. We claim, however, that their sum is not a dimension
module.

First note that in Rx + Ry, R(x +y)N S, =0. For if R(x +
HNS, #0 then Jx+y)NS, #0 because J(x + y)< R + y).
Choose 0 # s = (s, + 8,)(x + y) with s,s,€8,, s,€8,. Then s =s, +
S, + f8,+ 98, S0 8 — 8 — 98, = 8, + f8,€S,NS, =0. Hence fs5, = —s,
and so gs, = —s,. But then s = s, + gs, = 0, a contradiction.) Next,
Rx + Ry has dimension 2 so R(x + y) must be uniform. We have a
nonzero homomorphism k: R(x+y)— Rx+ Ry defined by h(r(x+y))=rs,
for s, fixed in S,. Also W(Rx+y)NRx+y) =SS, NRx+y) =0, and
kernel h<IR(x+vy) because J(x + y) S kernelh. Hence by Proposition
1, Rx + Ry fails to be a dimension module.

An interesting question, for which we do not have the answer,
is whether a maximal essential dimension extension is unique up to
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isomorphism.

3. Injective modules. It is our intention in this section to
develop conditions which force an injective module to be a dimen-
sion module. The first step is to give a condition based on possible
direct sum decompositions of the injective as a sum of two sub-
modules. We state an elementary lemma that will be used for
this characterization.

LEMMA 10. If AKIB=X® Y then XN A s closed in A.

Proof. If XNA<A <A, then X+ A =X@Y, where Y,=
(X+A4A)NnY. Next VNASX+A)DN'A=(XnNnA +A =A4,. I
Y,#0, then 0 Y, NAZC A, so 0=(Y;,NANXNA Dbecause
XNA<A,. But (Y,NANXNACEYNX=0, a contradiction.
Hence Y, =0, and A, £ X. So XNA=A, and XN A is closed in
A.

THEOREM 11. Let E be an injective module. E is a dimension
module if and only if, whenever E =X@PY and h: X— Y then h
splits. .

Proof. If E is a dimension module then by Proposition 1,
kernel 2 is closed in X, hence is injective. So kernel h is itself a
direct summand.

Conversely, let a partial endomorphism of E be given, f: A—FE
with fAN A =0. Choose B,C < E injective hulls of A and fA,
respectively. Then also BNC =0, so E=B@CEHD for some
submodule D. Let f: B— C be an extension of f. Regarding f as
a map: B—>C@D, f must split by hypothesis; write B = kernel
7 B,. Now apply Lemma 10 to learn that kernel f N A = kernel
f is closed in A. By Proposition 1, E is a dimension module.

COROLLARY 12. If E s an injective module and Rad End E=0
then E is a dimension module.

Proof. As is well known [3; 19.27], Rad End F = {f ¢ End E/|
kernel f <IE}. Suppose E=X@PY and hX—Y. Write X=
kernel i @ X, and define 2 ¢eEnd E by % = h on kernel h and hly gr=
0. Then kernel # < E, so h = 0; that is, kernel # = kernel %, and
we are done by Theorem 11.

The previous corollary generalizes Proposition 4 in view of [3;
19.29].
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Now over a Noetherian ring, every injective module is a direct
sum of indecomposable modules. So we ask, what conditions must
be placed on indecomposable injective summands in order that their
direct sum be a dimension module? We can in fact answer this
question for direct sums of arbitrary modules.

THEOREM 13. Let M = >,.c; P M,. Then M is a dimension
module if and only if each M, is a dimension module and every
partial homomorphism between two distinct M, has a closed kernel.

The proof of this theorem is in fact quite complicated. We
have therefore divided its proof among three lemmas.

LEMMA 14. The following conditions are equivalent.
(a) Partial homomorphisms from X to Y have closed kernels.
b) If ANX=KZAZXDY, then K| AN XJA/ANX.

Proof. (a)= (b) Assume that partial homomorphisms from X
to Y have closed kernels and that there exist submodules AN X =
KJA<X@Y. Suppose further that there is a submodule AN
X=<A4 = A with A/ANX)N K/(AN X) = 0; that is, A,NK = AN
X. We prove that K/(AN X)<JA/(AN X) by showing that neces-
sarily A, = An X.

Set X, = {x € X| there exists y,€¢ Y with (z, y.) € 4,}. We first
claim that the assignment f(x) = y, is a homomorphism from X, to
Y. To see this it clearly suffices to prove that f is well defined;
and this, in turn, is established provided we can show that A,N Y=
0. But if 4,NY =0, then KNA,NY #0 because K=IA4; and
then using the fact that A,N K = AN X, we would have 0 = KN
A NY=<XNY =0, a contradiction.

Next observe that kernel f=A4,N X =A4A,N K< A, because
K <1 A; and it then follows that kernel f <0 X,. Since partial homo-
morphisms from X to Y have closed kernels by hypothesis, we
have that kernel f = X,. Hence A, = 4, N X < AN X and therefore
Ao =A N X.

(b) = (a) Assume (b), and let f be any partial homomorphism
of X into Y. Choose X, to be a maximal essential extension of
kernel f in the domain of f. Our task is to prove that X,=kernel f.

Set A ={(z, f(x))|xe X,}, a submodule of X@ Y. Then AN
X =kernel f < A< X@ Y, with kernel f <J A because kernel f <
X,. So from (b), with K = AN X, we learn that 0 <1 A/(4 N X).
But this means that A = AN X, and hence that f(X,) =0. That
is, X, = kernel f. This completes the proof of this lemma.
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For notational convenience, let us write X+ Y to mean that
partial homomorphisms from X to Y have closed kernels.

Lemma 15, If X,+— X, for any 7135 and X,+— Y for all 4,
then D> P X, — Y.

Proof. Let feHomp(A, Y) where A < > . X,. By replac-
ing A with a maximal essential extension of kernel f in A, we may
assume without loss of generality that kernel f<< A. We proceed
by induction on %, the case n = 1 being trivially true.

For m >1, set 2 =37, X,. Then the restriction of f to
AN Z has an essential kernel, so by the inductive hypothesis we
have that f(ANZ)=0.

Let 7, be the natural projection of >\7, P X, onto X,. Then
AnNkernelr,=ANZ and f(ANZ) =0, so w, induces a monomor-
phism 7n: A/(AN Z)— X,. Consider now the canonical epimorphism
p: AJ(ANZ)— Alkernel f. A/(ANZ)=image 7 <X, and A/kernel f=
image f £, so by hypothesis the kernel of p is closed in A/(AN Z);
that is, kernel f/(ANZ) is closed in A/(ANZ). On the other hand,
ANZ <kernel f 1A < ZP X,, and by our induction hypothesis
partial homomorphisms from Z to X, have closed kernels. Hence
by the previous lemma, kernel f/(ANZ)<"A/(AN Z). From this it
follows that kernel f = A, and the proof is complete.

LEMMA 16. If X and Y are dimension modules with X +— Y
and Yi— X, then X@ Y is a dimension module.

Proof. Let A< X@ Y and let f be a homomorphism from A
to XY with An fA =0. We must prove that kernel f is closed
in A. As usual we can assume without loss of generality that
kernel f <1 A, and we must show that f =0. We let 7y and =,
denote the canonical projections of X Y onto X and Y, respec-
tively.

If #,.f(A) =0 then f(A) S Y, and we would be done by the
previous lemma. So we may assume without loss of generality that
7y f(A) # 0, and also that 7=, f(4) = 0. Then either AN7,.f(4)=4
nxf(A) or ANmn,f(A) Aryf(A); else AN (m:f(A) D ryf(A) would
be essential in 7, f(4) P 7,f(4), and would therefore have nonzero
intersection with f(A4), contradicting the fact that AN fA = 0.

Thus we may suppose that AN 7w,f(A) £ 7,f(4), so that there
exists 0= Y, = 7w, f(A) with AN Y,=0. Setting 4, = (zyf)"(Y,),
Ty f |4, is a partial homomorphism from X Y to Y. Hence by the
preceding lemma, kernel =, f|,, is closed in A,. But kernel z;f |, =
A, because kernel £ <1 A, and so nyf(4,) = 0, contradicting 7, f(A,) =
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Y, # 0. This contradiction establishes the fact that f = 0.

Proof of Theorem 13. From Corollary 2, it is clear that if M
fails to be a dimension module then so does some finite direct sum
of the M,, aeA. Thus it suffices to prove that 37 P M, is a
dimension module whenever each M; is a dimension module and
partial homomorphisms between distinet M, have closed kernels.

We proceed by induction on n. For » =2, we claim that
M, — 37, M, For if f is a partial homomorphism from M, to

7-. @ M, with an essential kernel, then f composed with the pro-
jection =, onto M;, 2 < ¢ < m, is a partial homomorphism from M,
to M, with an essential kernel. By hypothesis then, each z,f =0,
from which it follows that f = 0.

Next, >\r. @D M,— M, from Lemma 15, and >r.P M, is a
dimension module by the induction hypothesis. One may now apply
Lemma 16 to complete the proof.

COROLLARY 17. Let U = >,.; D U, where each U, is a uniform
module. Then U is a dimension module if and only if every mon-
zero partial homomorphism between two distinct U, is a monomor-
phism.

A module U is called monoform if each nonzero partial endo-
morphism of U is a monomorphism. We have the following
immediate consequence of the previous corollary.

COROLLARY 18. For a uniform module U the following condi-
tions are equivalent.

(a) U is monoform.

(b) UD U is a dimension module.

() U =3, U is a dimension module for every index
set I.

One can actually show a somewhat stronger result for a mono-
form module U. Namely, that if /1 A — U is a partial homomor-
phism of U into U® then kernel f is closed in U*. In particular,
when s =t one need not assume that fANA =0 to reach this
conclusion. Our proof of this is lengthy and will therefore not be
exhibited here.

We can now apply the previous results to a completely decom-
posable injective module.

THEOREM 19. Let E = D,..,P E, be an injective module with
each E, indecomposable. FE is a dimension module if and only if,
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whenever there exists a monzero homomorphism f:KE,— Ky with
a # 3 then E, = E, and End E, is a division ring.

Proof. Suppose E is a dimension module and 0 == f: E, — E,
with a = 8. By Corollary 17, f is a monomorphism. Since fE, is
an injective submodule of the indecomposable module E;, f must be
an isomorphism. Now suppose 0 = geEnd E,. If kernelg =0 we
would obtain a nonzero homomorphism FE,— E; which is not an
isomorphism. Hence kernelg = 0 and it follows as above that g is
an automorphism of E,.

For the converse we use Theorem 11. Let a homomorphism
h: X— Y be given where = X@ Y. It suffices to show that
kernel  is closed in X when kernel s = 0. Write X = kernel hPX..
Now kernelh and Y are themselves direct sums of indecomposable
injective modules, and by the Krull-Schmidt-Azumaya Theorem [3;
21.14] their indecomposable summands are isomorphic to the E,’s.
If we restrict 2 to an indecomposable summand of kernel z, the
restriction k] is not monie since kernel & <l kernel ~. By hypothesis,
h| followed by projection onto any indecomposable summand of Y
must be zero, hence h = 0 on kernel h; that is, kernel h = kernel
and we are done.

Since we have determined when a finite direct sum of uniform
modules is a dimension module, it would be interesting to solve the
corresponding problem for finite dimensional modules; that is, for
essential extensions of the class of modules already known. Although
this problem seems quite difficult we are able to determine a certain
extension of a direct sum of uniform modules, similar to the maxi-
mal rational extension, which is a dimension module if the direct
sum of uniforms is a dimension module.

PROPOSITION 20. Let U = >,.,P U, be a dimension module
where the U, are uniform. Let E(U,) denote the injective hull of
U, and set X, = N kernel f, the intersection taken over all fe
Hom (E(U,), E(U,)) with a + 8 and fU, =0. Then S...® X, is a
dimension module.

Proof. The proof follows easily using Corollary 17. For let f
be a partial homomorphism from X, to X, a # 8. Extend fto fe
Hom (E(U,), E(Uy). If fU,+# 0, then f gives rise by restriction to
a nonzero partial endomorphism from U, to U,, which must perforce
be a monomorphism. In this case f and therefore f must also be
monic. If, on the other hand, fU, =0, then by the definition of
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X,, fX,=fX,=0. Thus f must be zero or monie.

4, Appendix. This appendix on reduced rank was added at
the suggestion of the referee.

Let R be a right Noetherian ring with nilpotent radical N. The
reduced rank, o(M), of an R-module M was defined in [4] as follows.

If MN =0, po(M) is the Q-composition length of M Qyzy @
where Q is the quotient ring of R/N; while if M is an arbitrary
module, o(M) = 320 f(MN/MN*+"). It is well known that

(1) o(X/Y) = p(X) — o(Y),

so that in this respect p behaves like composition length. This
fact is applied quite cleverly in [2] to several aspects of noncom-
mutative ring theory.

It is a folklore result that if N=0 then o(M)=d(M)—d(Z(M)),
where Z(M) is the singular submodule of M. The question is, what
is the relationship between reduced rank and the results in this
paper?

First observe that

(2) o(A + B) = p(A) + p(B) — p(A N B) .

In fact, if p is any function satisfying (1) and (X P Y) = po(X) +
o(Y), then

p(A+B)=p(j§g> +P(A”B):”<A§B @AﬁB)

+p(AnB)=p<A‘ﬁB>+p<AﬁB>+p(AﬂB)=.0(A)

+ o(B) — 20(AN B) + p(AN B) = p(A) + p(B) — p(ANB) .

Next define z(M) = d(Z(M)), and set ¢ =d — z. Then
(8) o X+Y)=0X)+0Y)—0oXNY).

This is true because ¢ satisfies the conditions listed in the remark
at the end of [1] and so satisfies 7(X/Y) = 7(X) — «(Y) + «(Y/Y).
Moreover, Y/Y is singular, so ©(Y/Y) = d(Y/Y) and therefore o
satisfies (1). Hence by the discussion in the preceding paragraph,
o satisfies (3).

We can therefore conclude that a module is a dimension module
with respect to d if and only if it is a dimension module with
respect to z. On the other hand it is not true that a module is a
dimension module if its singular submodule is. For an example,
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consider M = Z/AZ D Z/2Z as a module over Z/4Z. Let A be the
submodule generated by (1, 1) and let B be the submodule generated
by (1, 0). Then M = A + B and d(A) = d(B) = d(A N B) = 1. Since
d(M) = 2, M is not a dimension module; but Z(M) equals the socle
of M and is therefore a dimension module.

Finally, observe that for a module M over an artinian ring R,
o(M) is the composition length of M while d(M) is the length of
the socle of M. Thus it is apparent that there is no useful rela-
tionship between these two invariants, other than the fact that
they happen to coincide if Rad R = 0. In fact the three dimension
functions p(M), d(M), o(M) are equal in the event that Rad R =0,
and are different otherwise. In fact, whenever R, has no simple
summands, ¢(M) = 0 because any maximal right ideal is then large
so Socle M < Z(M).

In summary then, the main points of this appendix are

(1) if N =0, then p(M) = d(M) — d(Z(M));

(2) p satisfies the classical dimension formula (2);

(3) d satisfies the classical dimension formula if and only if ¢
does.
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